{"id":434960,"date":"2024-10-20T07:47:00","date_gmt":"2024-10-20T07:47:00","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-ieee-63195-22023\/"},"modified":"2024-10-26T14:45:39","modified_gmt":"2024-10-26T14:45:39","slug":"bs-en-iec-ieee-63195-22023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-ieee-63195-22023\/","title":{"rendered":"BS EN IEC\/IEEE 63195-2:2023"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
5<\/td>\nAnnex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n
6<\/td>\nBlank Page <\/td>\n<\/tr>\n
7<\/td>\nEnglish
CONTENTS <\/td>\n<\/tr>\n
11<\/td>\nFOREWORD <\/td>\n<\/tr>\n
13<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
14<\/td>\n1 Scope
2 Normative references <\/td>\n<\/tr>\n
15<\/td>\n3 Terms and definitions
3.1 Exposure metrics and parameters <\/td>\n<\/tr>\n
16<\/td>\n3.2 Spatial, physical, and geometrical parameters associated with exposure metrics <\/td>\n<\/tr>\n
18<\/td>\n3.3 Test device technical operating and antenna parameters
3.4 Computational parameters <\/td>\n<\/tr>\n
19<\/td>\n3.5 Uncertainty parameters
4 Symbols and abbreviated terms
4.1 Symbols
4.1.1 Physical quantities <\/td>\n<\/tr>\n
20<\/td>\n4.1.2 Constants
4.2 Abbreviated terms <\/td>\n<\/tr>\n
21<\/td>\n5 Overview and application of this document
5.1 Overview of the numerical evaluation <\/td>\n<\/tr>\n
22<\/td>\n5.2 Application of this document
Figures
Figure 1 \u2013 Overview of the numerical power density evaluation procedure <\/td>\n<\/tr>\n
23<\/td>\n5.3 Stipulations
6 Requirements on the numerical software <\/td>\n<\/tr>\n
24<\/td>\n7 Model development and validation
7.1 General
7.2 Development of the numerical model of the DUT <\/td>\n<\/tr>\n
25<\/td>\n7.3 Power normalization <\/td>\n<\/tr>\n
27<\/td>\n7.4 Requirements on the experimental test equipment for model validation
7.4.1 General
Figure 2 \u2013 Power reference planes <\/td>\n<\/tr>\n
28<\/td>\n7.4.2 Ambient conditions and device holder
7.4.3 Power measurement <\/td>\n<\/tr>\n
29<\/td>\n7.5 Testing configurations for the validation of the DUT model
7.5.1 General
7.5.2 Tests to be performed <\/td>\n<\/tr>\n
30<\/td>\n7.5.3 Determining the validity of the DUT model
7.5.4 Test reduction for additional DUTs <\/td>\n<\/tr>\n
31<\/td>\n8 Power density computation and averaging
8.1 Evaluation surface
8.2 Tests to be performed and DUT configurations
8.2.1 General <\/td>\n<\/tr>\n
32<\/td>\n8.2.2 Devices with a single radiating element or with multiple elements that do not operate simultaneously
8.2.3 Devices with antenna arrays or sub-arrays
Figure 3 \u2013 Example for configurations of radiating elementsas different antenna sub-arrays on the same DUT <\/td>\n<\/tr>\n
33<\/td>\n8.2.4 Devices with multiple antennas or multiple transmitters
Figure 4 \u2013 Flow chart for the evaluation of power density forDUTs with antenna arrays or sub-arrays as described in 8.2.3 <\/td>\n<\/tr>\n
34<\/td>\n8.3 Considerations on the evaluation surface and dimensions of the computational domain
8.4 Averaging of power density on an evaluation surface
8.4.1 General <\/td>\n<\/tr>\n
35<\/td>\n8.4.2 Construction of the averaging area on an evaluation surface <\/td>\n<\/tr>\n
36<\/td>\n8.5 Computation of sPD by integration of the Poynting vector
8.5.1 General
8.5.2 Surface-normal propagation-direction power density into the evaluation surface, sPDn+
Figure 5 \u2013 Example of the construction of the averaging area withina sphere with fixed radius according to 8.4 <\/td>\n<\/tr>\n
37<\/td>\n8.5.3 Total propagating power density into the evaluation surface, sPDtot+
8.5.4 Total power density directed into the phantom considering near-field exposure, sPDmod+ <\/td>\n<\/tr>\n
38<\/td>\n8.6 Software
9 Uncertainty evaluation
9.1 General
9.2 Uncertainty of the sPD and of the mpsPD due to the computational parameters
9.2.1 Uncertainty contributions due to the computational parameters <\/td>\n<\/tr>\n
39<\/td>\n9.2.2 Mesh resolution
Tables
Table 1 \u2013 Budget of the uncertainty contributions ofthe computational algorithm for the validation setup or testing setup <\/td>\n<\/tr>\n
40<\/td>\n9.2.3 Absorbing boundary conditions
9.2.4 Power budget
9.2.5 Model truncation
9.2.6 Convergence <\/td>\n<\/tr>\n
41<\/td>\n9.2.7 Dielectric properties
9.2.8 Lossy conductors
9.3 Uncertainty contribution of the computational representation of the DUT model <\/td>\n<\/tr>\n
42<\/td>\n9.4 Uncertainty of the maximum exposure evaluation
Table 2 \u2013 Budget of the uncertainty of the developed model of the DUT <\/td>\n<\/tr>\n
43<\/td>\n9.5 Uncertainty budget
Table 3 \u2013 Computational uncertainty budget <\/td>\n<\/tr>\n
44<\/td>\n10 Reporting <\/td>\n<\/tr>\n
46<\/td>\nAnnex A (normative)Code verification
A.1 General
A.2 Interpolation and superposition of vector field components <\/td>\n<\/tr>\n
47<\/td>\nFigure A.1 \u2013 Configuration of three \u03bb\/2 dipoles, D1, D2, and D3, for the evaluation of the interpolation and superposition of the electric field and magnetic field components
Table A.1 \u2013 Interpolation and superposition of vector field components; maximum permissible deviation from the reference results is 10 % <\/td>\n<\/tr>\n
48<\/td>\nA.3 Computation of the far-field pattern and the radiated power
A.4 Implementation of lossy conductors
Table A.2 \u2013 Computation of PR; maximum permissible deviation fromthe reference results is 10 % for the radiated power and for the electric field amplitude of the far-field pattern <\/td>\n<\/tr>\n
50<\/td>\nFigure A.2 \u2013 R320 waveguide <\/td>\n<\/tr>\n
51<\/td>\nA.5 Implementation of anisotropic dielectrics
Figure A.3 \u2013 Cross section of the R320 waveguide showingthe locations of the Ey components to be recorded
Table A.3 \u2013 Minimum fine and coarse mesh step for used method
Table A.4 \u2013 Results of the evaluation of the computational dispersion characteristics <\/td>\n<\/tr>\n
52<\/td>\nA.6 Computation of the sPD and psPD
A.6.1 General
Table A.5 \u2013 Results of the evaluation of the representation of anisotropic dielectrics <\/td>\n<\/tr>\n
53<\/td>\nTable A.6 \u2013 Parameters for the incident power density distribution of Formula (A.4) <\/td>\n<\/tr>\n
54<\/td>\nA.6.2 Planar surfaces
Figure A.4 \u2013 Si(x,y) computed with Formula (A.4) for the six parametersets of Table A.6 normalized to their maxima <\/td>\n<\/tr>\n
55<\/td>\nA.6.3 Non-planar surfaces <\/td>\n<\/tr>\n
56<\/td>\nFigure A.5 \u2013 Cross sections of the symmetric quarters of the testing geometries (SAR Stars) for the benchmarking of the power density averaging algorithm
Figure A.6 \u2013 Areas for the computation of the sPD on a cone of the SAR Star <\/td>\n<\/tr>\n
57<\/td>\nA.7 Implementation of the field extrapolation according to the surface equivalence principle <\/td>\n<\/tr>\n
58<\/td>\nAnnex B (informative)Experimental evaluation of the radiated power
B.1 General
B.2 Direct conducted power measurements
Table B.1 \u2013 Comparison of the experimental methodsfor the evaluation of the radiated power <\/td>\n<\/tr>\n
59<\/td>\nB.3 Radiated power measurement methods
B.4 Information provided by the DUT <\/td>\n<\/tr>\n
60<\/td>\nAnnex C (normative)Maximum-exposure evaluation techniques
C.1 General
C.2 Evaluation of EM fields radiated by each antenna element <\/td>\n<\/tr>\n
61<\/td>\nC.3 Evaluation of the mpsPD by superposition of individual EM fields
C.3.1 General
C.3.2 Maximization over the entire codebook by exhaustive search
C.3.3 Optimization with fixed total conducted power
C.3.4 Optimization with fixed power at each port <\/td>\n<\/tr>\n
63<\/td>\nAnnex D (informative)Examples of the implementation of power density averaging algorithms
D.1 Example for the evaluation of the psPD on a planar surface
D.1.1 General
D.1.2 Evaluation of the psPD by direct construction of the averaging area <\/td>\n<\/tr>\n
64<\/td>\nD.1.3 Example for the efficient evaluation of the psPD using an equidistant mesh on the evaluation surface <\/td>\n<\/tr>\n
65<\/td>\nD.2 Example for the evaluation of the psPD on a non-planar surface
Figure D.1 \u2013 Rotated averaging area on the discretized evaluation surface (base mesh) <\/td>\n<\/tr>\n
66<\/td>\nFigure D.2 \u2013 Reduction of the area of triangles thatare partially included in the averaging sphere <\/td>\n<\/tr>\n
67<\/td>\nAnnex E (informative)File format for exchange of field data <\/td>\n<\/tr>\n
69<\/td>\nAnnex F (informative)Rationales of the methods applied inIEC\/IEEE 63195-1 and this document
F.1 Frequency range
F.2 Computation of sPD
F.2.1 Application of the Poynting vector for computation of incident power density <\/td>\n<\/tr>\n
70<\/td>\nF.2.2 Averaging area <\/td>\n<\/tr>\n
71<\/td>\nAnnex G (informative)Square averaging area on non-planar evaluation surfaces
G.1 General
G.2 Example implementation for the evaluation of the psPD on a non-planar surface using square-shaped averaging area <\/td>\n<\/tr>\n
72<\/td>\nAnnex H (informative)Validation of the maximum-exposure evaluation techniques
H.1 General
H.2 Validation of the exhaustive search
H.2.1 Validation of the exhaustive search
H.2.2 Validation using reconstruction method
H.2.3 Validation of optimization with fixed total conducted power or with fixed power at each port
H.2.4 Validation of the maximum-exposure evaluation of measurement results <\/td>\n<\/tr>\n
73<\/td>\nH.3 Example validation source for maximum-exposure evaluation validation
H.3.1 Description
Table H.1 \u2013 Main dimensions for the patch array stencil
Table H.2 \u2013 Main dimensions of the validation device <\/td>\n<\/tr>\n
74<\/td>\nFigure H.1 \u2013 Main dimensions of patch array stencil <\/td>\n<\/tr>\n
75<\/td>\nH.3.2 Positioning
Figure H.2 \u2013 Main dimensions of the validation device, including polypropylene casing
Figure H.3 \u2013 Validation device with SAM head in the tilt position <\/td>\n<\/tr>\n
76<\/td>\nH.3.3 Nominal codebook, uncertainty and conducted power PR
H.3.4 Target values
Figure H.4 \u2013 Validation device with SAM head in the touch position <\/td>\n<\/tr>\n
77<\/td>\nTable H.3 \u2013 Target values for validation device with the nominal codebook
Table H.4 \u2013 Target values for validation device with infinite codebook <\/td>\n<\/tr>\n
78<\/td>\nAnnex I (normative)Supplemental files and their checksums <\/td>\n<\/tr>\n
79<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) – Computational procedure<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2023<\/td>\n82<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":434969,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[285,2641],"product_tag":[],"class_list":{"0":"post-434960","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-17-220-20","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/434960","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/434969"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=434960"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=434960"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=434960"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}