{"id":464831,"date":"2024-10-20T10:37:10","date_gmt":"2024-10-20T10:37:10","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iso-iec-51522024\/"},"modified":"2024-10-26T19:34:56","modified_gmt":"2024-10-26T19:34:56","slug":"bs-iso-iec-51522024","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iso-iec-51522024\/","title":{"rendered":"BS ISO\/IEC 5152:2024"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 4 Symbols and abbreviated terms 5 Conformance 6 Details of estimation 6.1 Estimation of biometric performance based on extreme value theory <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 6.2 Estimation design 6.3 Generalized extreme value distribution <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 6.4 Generalized Pareto distribution <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 6.5 \u200bEvaluation of the fitness of the model <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 6.6 Selection of rGEV and GP 6.6.1 Differences between the two methodologies <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 6.6.2 Features of the two methodologies 7 Performance metrics <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 8 Record keeping 9 Reporting estimation results 9.1 Reporting one-to-one comparison performance 9.2 Reporting estimation results <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 9.3 Reporting form <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Annex A (informative) Extreme value theory <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Annex B (informative) Examples applied to multiple modality datasets to demonstrate the validity of the methodology <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Information technology. Biometric performance estimation methodologies using statistical models<\/b><\/p>\n |