Shopping Cart

No products in the cart.

ACI 343R 95 1995

$86.94

343R-95: Analysis & Design of Reinforced Concrete Bridge Structures (Repproved 2004)

Published By Publication Date Number of Pages
ACI 1995 158
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

These recommendations, reported by the joint ACI-ASCE Committee 343 on Concrete Bridge Design, provide currently acceptable guidelinesfor the analysis and design of reinforced, prestressed, and partially prestressed concrete bridges based on the state of the art at the rime of writing the report. The provisions recommended herein apply to pedest rian bridges, highway bridges, railroad bridges, airport taxiway bridges, and other special bridge structures. Recommendations for Transit Guideways are given in ACI 358R. The subjects covered in these recommendations are: common terms; general considerations; materials; construction: loads and load combinations; preliminary design: ultimate load analysis and strength design; service load analysis and design: prestressed concrete; superstructure systems and elements; substructure systems and elements; precast concrete: and details of reinforcement. The quality and testing of materials used in construction are covered by reference to the appropriate AASHTO and ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Keywords: admixtures; aggregates; anchorage (structural); beam-column frame; beams (supports); bridges (structures); cements; cold weather construction; columns (supports); combined stress; composite construction (concrete and steel); composite construction (concrete to concrete); compressive strength; concrete construction; concretes; concrete slabs;construction joints; construction materials; continuity (structural); cover; curing; deep beams; deflection; earthquake-resistant structures; flexural strength; footings; formwork (construction); frames; hot weather construction; inspection; lightweight concretes; loads (forces); mixing; mixture proportioning; modulus of elasticity; moments; placing; precast concrete; prestressed concrete; prestressing steels; quality control; reinforced concrete; reinforcing steels; serviceability; shear strength; spans; specifications; splicing; strength; structural analysis; structural design; T-beams; torsion; ultimate strength method; water; welded-wire fabric.

PDF Catalog

PDF Pages PDF Title
1 CONTENTS
4 CHAPTER 1— DEFINITIONS, NOTATION, AND ORGANIZATIONS
1.1—Introduction
1.2—Definitions
5 1.3—Notation
10 1.4—Referenced organizations
11 Recommended references
12 CHAPTER 2— REQUIREMENTS FOR BRIDGES
2.1—Introduction
2.1.1 General
2.1.2 Alignment
13 2.1.3 Drainage
2.2—Functional considerations
2.2.1 Highway bridges
2.2.1.1 Highway classification
2.2.1.2 Width
2.2.1.3 Clearances
2.2.1.4 Sidewalks
2.2.1.5 Curbs
14 2.2.1.6 Medians
2.2.1.7 Railing
2.2.1.8 Superelevation
2.2.1.9 Surfacing
2.2.1.10 Expansion joints
2.2.2 Railway bridges
2.2.2.1 Railway classification
2.2.2.2 Width
2.2.2.3 Clearances
15 2.2.2.4 Deck and waterproofing
2.2.2.5 Expansion joints
2.2.3 Aircraft runway bridges
2.2.4 Transit bridges
2.2.5 Spans and profile
2.2.5.1 General
2.2.5.2 Stream and flood plain crossings
16 2.2.5.3 Navigable stream crossings
2.2.5.4 Highway crossings (Fig. 2.2.5.4)
2.2.5.5 Railway crossings (Fig. 2.2.5.5)
2.3—Esthetic considerations
2.4—Economic considerations
2.4.1 Criteria for least cost
2.4.2 Alternative designs
2.4.3 Value engineering
18 2.5—Bridge types
19 2.5.1 Deck, half-through, and through types (see Fig.2.5.1)
2.5.2 Simple, cantilever, and continuous span types (see Fig. 2.5.2)
2.5.3 Slab, stringer, and girder types
2.5.3.1 Slab type (see Fig. 2.5.3.1)
2.5.3.2 Stringer type (see Fig. 2.5.3.2)
20 2.5.3.3 Girder type (see Fig. 2.5.3.3)
2.5.4 Rigid-frame type (see Fig. 2.5.4)
2.5.5 Arch type
2.5.5.1 Spandrel or barrel arches (see Fig. 2.5.5.1)
2.5.5.2 Ribbed or open-spandrel arches (see Fig.2.5.5.2)
21 2.5.5.3 Tied arches (see Fig. 2.5.5.3)
2.5.5.4 Long-span arches
2.5.5.5 Splayed arches or space frame
2.5.6 Truss types
2.5.6.1 Vierendeel truss (see Fig. 2.5.6.1)
2.5.7 Cable-stayed types (see Fig. 2.5.7)
2.5.8 Suspension types (see Fig. 2.5.8)
22 2.6—Construction and erection considerations
2.6.1 Cast-in-place and precast concrete
2.6.2 Reinforced, partially prestressed, and prestressed
2.6.3 Composite construction
2.6.4 Post-tensioned segmental construction
2.6.4.1 Box girders
2.6.4.2 I-beams
2.6.4.3 Arches
2.7—Legal considerations
2.7.1 Permits over navigable waterways
23 2.7.2 Environmental laws and national policy
24 2.7.3 Plans, specifications, and contracts
2.7.4 Construction inspection
RECOMMENDED REFERENCES
25 CITED REFERENCES
26 CHAPTER 3— MATERIALS
3.1—Introduction
3.2—Materials
3.2.1 Sources
3.2.2 Specifications and standard practices
3.2.3 Admixtures
3.2.4 Aggregates
27 3.2.5 Cement
3.2.6 Water
3.2.7 Selection of concrete proportions
3.2.8 Curing materials
28 3.2.9 Joint materials
3.2.9.1 Water stops
3.2.9.2 Joint fillers
3.2.9.3 Joint sealants
3.2.9.4 Mechanically locked sealants
3.2.9.5 Steel joints
3.2.10 Bearings
29 3.2.10.1 Elastomeric bearings
3.2.10.2 PTFE slide bearings
3.2.10.3 Steel bearings
3.2.10.4 Pot bearings
3.2.10.5 Shear inhibited disc bearings
3.2.11 Metal reinforcement
3.2.11.1 Reinforcing bars
3.2.11.2 Coated reinforcing bars
30 3.2.11.3 Bar mats
3.2.11.4 Wire
3.2.11.5 Welded wire fabric
3.2.11.6 Prestressing tendons
3.2.11.7 Structural steel, steel pipe, or tubing
3.2.12 Accessories
3.2.12.1 Bar supports
31 3.2.12.2 Side form spacers
3.2.12.3 Tie wire
3.2.12.4 Bar splicing material
3.2.12.5 Tensioning tendon components
3.2.13 Appurtenances
3.2.13.1 General
3.2.13.2 Forms
3.2.13.3 Form coatings
3.2.13.4 Galvanized materials
32 3.2.13.5 Cast iron and stainless steel
3.2.14 Storage of materials
3.2.14.1 Cement
3.2.14.2 Aggregates
3.2.14.3 Metal reinforcement
3.3—Properties
3.3.1 Compressive strength
3.3.2 Tensile strength
3.3.3 Modulus of elasticity and Poisson’s ratio
3.3.4 Creep
3.3.5 Shrinkage
33 3.3.6 Thermal coefficient
3.3.7 State-of-the-art
3.3.8 Reinforcement properties
3.4—Standard specifications and practices
3.4.1 ACI guidelines and standard practices
3.4.2 AREA Manual for Railway Engineering
3.4.3 ASTM standards
35 3.4.4 AASHTO materials specifications
3.4.5 ASTM-AASHTO specification cross-reference
36 RECOMMENDED REFERENCES
37 CHAPTER 4— CONSTRUCTION CONSIDERATIONS
4.1—Introduction
4.1.1 Definition
4.1.2 Examples4-1
4.1.2.1 Section size
4.1.2.2 Camber
38 4.1.2.3 Construction sequence
4.2—Restrictions
4.3—Goals
39 4.4—Planning
4.5—Site characteristics
4.5.1 Site accessibility
4.5.2 Climate
4.5.2.1 General
4.5.2.2 Air-entrained concrete
4.5.3 Materials availability
40 4.5.4 Temporary foundations
4.6—Environmental restrictions
4.6.1 Falsework
4.6.2 Earthwork
4.6.3 Construction
4.7—Maintenance of traffic
4.7.1 Railroad clearances
4.7.2 Highway clearances
41 4.8—Project needs
4.8.1 Construction sequence
4.8.1.1 Partial-width construction
42 4.8.1.2 Partial-length construction
4.8.1.3 Detour bridges
4.8.2 Construction loads
4.8.2.1 Composite and segmental structures
4.8.2.2 Earthmoving vehicles
4.8.3 Standardization
43 4.9—Design of details
4.9.1 Dimensions
4.9.2 Repetitiveness
4.9.3 Slipforming
4.9.4 Soffit lines
4.9.5 Placement of reinforcement
4.9.6 Placement of anchor bolts
4.9.7 Hinges
44 4.9.8 Fixed end supports
4.9.9 Accuracy of construction
4.9.9.1 Pile location
4.9.9.2 Precast elements
4.10—Selection of structure type
4.10.1 Concrete slab bridges
4.10.1.1 Cast-in-place bridges
45 4.10.1.2 Precast slab bridges
4.10.2 Reinforced concrete T-beams
4.10.2.1 Reinforcement
4.10.2.2 Construction joints
4.10.2.3 Longitudinal joints
4.10.3 Precast, prestressed girders
4.10.3.1 Transportation and handling
46 4.10.3.2 Camber
4.10.4 Nonprestressed reinforced concrete box girders
4.10.4.1 Reinforcement
4.10.4.2 Construction joints
4.10.5 Post-tensioned concrete box girders
4.10.5.1 Falsework
4.10.5.2 Construction options
4.10.6 Post-tensioned segmental construction4-5,4-6
4.10.6.1 Standardization
47 4.10.6.2 Construction loads
4.10.6.3 Design procedure
4.11—Construction problems4-8,4-9
4.11.1 Cracking due to shrinkage and creep
48 4.11.2 Temperature cracking
4.11.3 Cracking due to tendons
4.11.4 Crushing of ducts
4.11.5 Construction joints
4.11.5.1 Joint location
4.11.5.2 Joint configuration
49 4.11.6 Cracking at anchorages
4.11.7 Misalignment of ducts
4.11.8 Miscellaneous
4.12—Alternate designs
4.12.1 General
4.12.2 Value engineering change proposals4-10
50 4.13—Conclusions
RECOMMENDED REFERENCES
CITED REFERENCES
51 CHAPTER 5— LOADS AND LOAD COMBINATIONS
5.1—Introduction
5.2—Dead loads
5.2.1 Structure dead loads
5.2.2 Superimposed dead loads
5.3—Construction, handling, and erection loads
5.4—Deformation effects
5.4.1 Settlement of supports
5.4.2 Shrinkage and creep
52 5.4.2.1 Shrinkage
5.4.2.2 Creep
5.4.3 Axial load deformations
5.4.4 Thermal effects
53 5.4.5 Prestress effects
5.4.6 Frictional forces
5.5—Environmental loads
5.5.1 Wind loads
5.5.1.1 Selection of procedures
5.5.1.2 General procedure
55 5.5.1.3 Simplified procedure
5.5.2 Snowloads
5.5.3 Earthquake loads
5.5.3.1 Historical
56 5.5.3.2 ATC method
5.5.3.3 AASHTO specifications
57 5.5.4 Earth pressures
5.5.4.1 Active earth pressure
5.5.4.2 At rest earth pressure
5.5.4.3 Passive earth pressure
5.5.4.4 Drag force
5.5.5 Buoyancy
5.5.6 Stream flow pressure
5.5.7 Ice loads
5.5.7.1 Ice buildup on structures
58 5.5.7.2 Dynamic ice pressures
5.5.7.3 Static ice pressure
5.5.8 Debris loads
5.5.9 Wave action
5.5.10 Ship impact
5.6—Pedestrian bridge live loads
5.6.1 Deck live load
59 5.6.2 Railing live load
5.6.3 Provision for overload
5.7—Highway bridge live loads
5.7.1 Standard vehicular live loads
5.7.2 Special truck loads
5.7.2.1 Logging trucks
5.7.2.2 Military loads
5.7.2.3 Overload provisions
5.7.3 Application of vehicular live loading
5.7.3.1 Design traffic lanes
5.7.3.2 Traffic lane units
5.7.3.3 Positioning of live loads
5.7.4 Reduction in load intensity
5.7.5 Distribution of loads to beams
5.7.6 Fatigue
60 5.8—Railroad bridge live loads
5.8.1 Design live loads
5.8.2 Provisions for overload
5.9—Rail transit bridge live loads
5.10—Airport runway bridge loads
5.10.1 Landing gear loads
5.10.2 Impact
62 5.10.3 Application of wheel loads
5.10.3.1 Slabs
5.10.3.2 Beams and girders
5.10.4 Braking forces
5.10.5 Provisions for crash landing loads
5.11—Pipeline and conveyor bridge loads
5.11.1 Fluid loads
5.11.2 Solid loads
63 5.11.3 Equipment loads
5.12—Load combinations
RECOMMENDED REFERENCES
65 CITED REFERENCES
66 CHAPTER 6— PRELIMINARY DESIGN
6.1—Introduction
67 6.2—Factors to be considered
6.2.1 Loads
6.2.1.1 Permanent loads (time invariant)
6.2.1.2 Transient loads (time variant)
6.2.1.3 Exceptional loads
6.2.2 Geometry
6.2.3 Corrosion protection
6.2.4 Esthetic considerations
6.2.5 Subsurface conditions
68 6.2.6 First cost and ease of maintenance
6.2.7 Life-cycle cost
6.2.8 Safety
6.2.9 Waterway crossings—Special requirements
6.2.10 Rail and transit bridges—Special requirements
6.2.11 Prestressed concrete—Special considerations
6.2.12 Environmental exposure
6.3—High priority items
6.3.1 Typical section and alignment: Vertical and horizontal
6.3.2 Span length composition: Uniform or varying
69 6.3.3 Special conditions
6.3.4 Combination with other structures
6.3.5 Environmental impact factors
6.4—Structure types
6.4.1 Nonprestressed concrete slab bridges
6.4.2 Nonprestressed concrete girder bridges
6.4.2.1 T-Beam (Fig. 6.4.1a)
70 6.4.2.2 Nonprestressed concrete box girder (Fig. 6.4.1.b)
6.4.3 Prestressed concrete slab bridges
6.4.3.1 Cast-in-place post-tensioned
6.4.3.2 Precast pretensioned (Fig. 6.4.1f)
71 6.4.4 Prestressed concrete girder bridges
6.4.4.1 Cast-in-place, post-tensioned (Fig. 6.4.1a andFig. 6.4.1b)
6.4.4.2 Precast T-Beam, I-girder, and box girder (Fig. 6.4.1.c, d, and e; and Fig. 6.4.4.2)
6.4.5 Post-tensioned segmental bridges
72 6.4.6 Rigid-frame bridges (Fig. 6.4.6)
6.4.7 Jointless bridges
6.4.8 Arch bridges
6.4.8.1 General (Fig. 6.4.8.1)
6.4.8.2 Spandrel-filled arch (Fig. 6.4.8.2)
6.4.8.3 Barrel arch (Fig. 6.4.8.3)
6.4.8.4 Two-hinged rib open-spandrel arch (Fig. 6.4.8.4)
73 6.4.8.5 Fixed-rib open-spandrel arch (Fig. 6.4.8.5)
6.4.8.6 Tied arch (Fig. 6.4.8.6)
6.4.8.7 Stiffened arch (Fig. 6.4.8.7)
6.4.9 Cable-stayed bridges (Fig. 6.4.9)
74 6.4.10 Suspension bridges
6.4.11 Truss bridges (Fig. 6.4.11a, b, and c)
75 6.4.12 Special systems
6.5—Superstructure initial section proportioning
6.6—Abutments
6.6.1 Types
76 6.6.1.1 Open-end abutments
6.6.1.2 Closed-end abutments
77 6.6.2 Abutment type selection
6.6.3 Bridge abutment approach slab
6.7—Piers and bents
6.7.1 Solid piers (Fig. 6.7.1)
6.7.2 Pile bents (Fig. 6.7.2)
6.7.3 Multicolumn bents (Fig. 6.7.3)
78 6.7.4 Single-column piers (Fig. 6.7.4)
6.7.5 Mushroom piers (Fig. 6.7.5)
6.7.6 Towers
6.8—Appurtenances and details
6.9—Finishes
79 CHAPTER 7— STRENGTH DESIGN
7.1—Introduction
7.2—considerations for analysis, design, and review
7.2.1 General
7.2.2 Stiffness
7.2.3 Span length
7.2.4 Analysis
7.2.5 Redistribution
80 7.2.6 Composite concrete construction
7.2.6.1 General considerations
7.2.6.2 Shoring
7.2.6.3 Vertical shear
7.2.6.4 Horizontal shear
7.2.7 T-girder construction
7.2.8 Box girder construction
7.2.8.1 General
81 7.2.8.2 Lateral distribution of loads for bending moment
7.2.8.3 Effective compression flange width
7.2.8.4 Slab and web thickness
7.2.8.5 Top and bottom slab reinforcement
7.2.8.6 Diaphragms
7.2.9 Limiting dimensions for members
7.2.9.1 General
7.2.9.2 Compression members
7.2.9.3 Flexural members
7.3—Strength requirements
7.3.1 Required strength
7.3.2 Strength
82 7.3.3 Design assumptions
7.3.4 Flexure
7.3.4.1 Minimum reinforcement of nonprestressed flexural members
83 7.3.4.2 Maximum reinforcement of nonprestressed flexural members
7.3.4.3 Rectangular sections with nonprestressed tension reinforcement only
7.3.4.4 Flanged sections with tension reinforcement only
7.3.4.5 Rectangular sections with compression reinforcement
84 7.3.4.6 Other nonprestressed cross sections
7.3.4.7 Prestressed concrete members
85 7.3.4.8 Special recommendations for slabs
7.3.5 Nonprestressed compression members with or without flexure
7.3.5.1 General requirements
7.3.5.2 Limits for reinforcement of compression members
7.3.5.3 Compression member strength
7.3.5.4 Biaxial loading
86 7.3.6 Slenderness effects in compression members
7.3.6.1 General
7.3.6.2 Unsupported length
7.3.6.3 Radius of gyration
7.3.6.4 Effective length factor and lateral stability
7.3.6.5 Moment magnification
87 7.3.7 Shear strength required
7.3.8 Shear strength provided by concrete for nonprestressed members
7.3.8.1 Simplified strength calculations
88 7.3.8.2 Detailed strength calculations
7.3.9 Shear strength provided by concrete for prestressed members
7.3.9.1 Basic strength calculation
7.3.9.2 Detailed strength calculations
89 7.3.9.3 Strength reduction due to transfer length and bonding
7.3.10 Lightweight concrete shear strength
7.3.11 Shear strength provided by shear reinforcement
7.3.11.1 Types of shear reinforcement
7.3.11.2 Spacing limits for shear reinforcement
7.3.11.3 Minimum shear reinforcement
90 7.3.11.4 Design of shear reinforcement
7.3.12 Combined shear and torsion strength for nonprestressed members with rectangular, flanged, or box sections
7.3.12.1 General
7.3.12.2 Torsional moment strength required
7.3.12.3 Torsional moment strength provided by concrete
91 7.3.12.4 Torsion reinforcement recommendations
7.3.12.5 Design of torsion reinforcement
7.3.13 Combined shear and torsion strength for prestressed members
7.3.14 Shear-friction
7.3.14.1 General
92 7.3.14.2 Shear-friction design method
7.3.15 Horizontal shear design for composite concrete flexural members
7.3.15.1 Calculations for shear
7.3.15.2 Allowable shear
7.3.15.3 Ties for horizontal shear
7.3.16 Special shear provisions for deep flexural members
93 7.3.17 Special shear provisions for brackets and corbels
7.3.18 Special shear recommendations for slabs and footings
7.3.18.1 General
94 7.3.18.2 Slabs and footings without shear reinforcement
7.3.18.3 Slabs and footings with shear reinforcement
7.3.19 Transfer of moment to columns
7.3.20 Bearing strength
RECOMMENDED REFERENCES
CITED REFERENCES
96 CHAPTER 8— SERVICE LOAD ANALYSIS AND DESIGN
8.1—Basic assumptions
8.1.1 Nonprestressed members
8.1.2 Prestressed members
8.2—Serviceability requirements
8.2.1 Nonprestressed flexural members
97 8.2.2 Prestressed members
8.3—Fatigue of materials
8.3.1 Reinforcing bars
8.3.2 Prestressing steel
8.4—Distribution of reinforcement in flexural members
8.4.1 General
98 8.4.2 T-beam flanges
8.4.3 Deep members
8.5—Control of deflections
8.5.1 General
8.5.2 Superstructure depth limitations
8.5.3 Nonprestressed members
8.5.3.1 Computation of immediate deflection
8.5.3.2 Computation of long-time deflections
99 8.5.4 Prestressed members
8.5.4.1 Computation of immediate deflection
8.5.4.2 Computation of long-time deflection
8.6—Permissible stresses for prestressed flexural members
8.6.1 Temporary stresses
8.6.2 Service load stresses
8.7—Service load design
8.7.1 Flexure
100 8.7.2 Development of reinforcement
8.7.3 Compression members
8.7.4 Shear
8.7.4.1 General
8.7.4.2 Concrete
8.7.4.3 Reinforcement
8.7.4.4 Deep members
8.8—Thermal effects
RECOMMENDED REFERENCES
CITED REFERENCES
102 CHAPTER 9— PRESTRESSED CONCRETE
9.1—Introduction
9.1.1 General
9.1.2 Codes
9.2—General design considerations
9.2.1 General
9.2.2 Critical loads
9.2.3 Crack control
9.2.4 Deformation stresses
9.2.5 Buckling
9.3—Basic assumptions
103 9.4—Flexure, shear
9.5—Permissible stresses
9.6—Prestress losses
9.6.1 General
9.6.2 Anchorage slip
9.6.3 Friction losses
9.6.3.1 Post-tensioned construction
104 9.6.3.2 Pretensioned construction
9.6.4 Elastic and time-dependent losses
9.6.4.1 Approximation of losses
9.6.4.2 Calculation of losses
105 9.6.4.3 Losses for deflection calculations
9.6.4.4 Loss calculations for unusual bridges
9.6.4.5 Effect of nonprestressed reinforcement
9.7—Combined tension and bending
9.8—Combined compression and bending
9.9— Combination of prestressed and nonprestressed reinforcement— Partial prestressing
106 9.10—Composite structures
9.10.1 General
9.10.2 Shear transfer
9.10.3 Shear capacity
9.10.4 Vertical ties
9.10.5 Shrinkage stresses
9.11—Crack control
9.11.1 General
9.11.2 Construction using bonded tendons
9.11.3 Construction using unbonded tendons
107 9.12—Repetitive loads
9.12.1 Construction using unbonded tendons
9.12.2 Diagonal tension
9.12.3 Fatigue
9.13—End regions and laminar cracking
9.13.1 Cracking
9.13.1.1 Bursting or splitting cracks
9.13.1.2 Spalling cracks
9.13.1.3 Section change cracks
9.13.1.4 Reinforcement details
9.13.2 End blocks
108 9.13.3 Bearing under anchorages
9.13.3.1 Maximum stresses
9.13.3.2 Conical anchorages
9.13.3.3 Plate thickness
9.13.4 Inclined tendons
9.13.5 Laminar cracking
9.14—Continuity
9.14.1 General
9.14.2 Continuous bridges
9.14.2.1 General
9.14.2.2 Minimum dead load
9.14.3 Bridges composed of girders made continuous
9.14.3.1 General
9.14.3.2 Positive moment connection at piers
109 9.14.3.3 Negative moments
9.14.3.4 Compressive stress at piers under service loads
9.15—Torsion
9.15.1 General
9.15.2 Curved bridges
9.15.3 Design neglecting torsional stiffness
9.15.4 Design including torsional stiffness
9.16—Cover and spacing of prestressing steel
9.17—Unbonded tendons
9.17.1 General
9.17.2 Corrosion protection
9.18—Embedment of pretensioning strands
110 9.19—Concrete
9.19.1 Admixtures
9.19.2 Strength
9.20—Joints and bearings for precast members
9.20.1 General
9.20.2 Design criteria
9.21—Curved box girders
RECOMMENDED REFERENCES
CITED REFERENCES
113 CHAPTER 10— SUPERSTRUCTURE SYSTEMS AND ELEMENTS
10.1—Introduction
10.2—Superstructure structural types
10.2.1 Nonprestressed concrete slab bridges
10.2.1.1 General
10.2.1.2 Cast-in-place
10.2.1.3 Precast
10.2.2 Nonprestressed concrete girder bridges
10.2.3 Prestressed concrete slab bridges
10.2.3.1 General
114 10.2.3.2 Cast-in-place
10.2.3.3 Precast
10.2.4 Prestressed concrete girder bridges
10.2.4.1 General
10.2.4.2 Cast-in-place
10.2.4.3 Precast
115 10.2.5 Rigid frame bridges
10.2.5.1 General
10.2.5.2 Types of rigid frames
10.2.6 Arch bridges
10.2.6.1 General
10.2.6.2 Types
116 10.2.7 Truss bridges
10.2.8 Cable-stayed bridges
10.2.8.1 General
10.2.8.2 Stiffening system
10.2.8.3 Towers
10.2.8.4 Cable systems
10.2.9 Suspension bridges
10.2.9.1 General
117 10.2.9.2 Stiffening system
10.2.9.3 Towers
10.2.9.4 Suspension system
10.3—Methods of superstructure analysis
10.3.1 General
10.3.2 Elastic methods
10.3.3 Model analysis
10.3.4 Nonlinear methods
10.4—Design of deck slabs
10.4.1 General
10.4.2 Empirical methods
10.4.2.1 Limitations
10.4.2.2 One-way slab
118 10.4.2.3 Two-way slab
10.4.2.4 Ribbed slabs
10.4.2.5 Cantilever slabs
10.5—Distribution of loads to beams
119 10.5.1 T-beam or precast I-girder and box girder bridges
10.5.1.1 Interior beams
10.5.1.2 Exterior beams
10.5.1.3 Total capacity of longitudinal beams
10.5.1.4 Bending moments for T- and I-girder bridges with cross girders
120 10.5.2 Spread box-beam bridges
10.5.3 Multi-beam precast concrete bridge
10.5.4 Transverse floor beams
10.5.5 Position of loads for shear
10.6—Skew bridges
10.6.1 General
10.6.2 Bending moments
10.6.3 Reactions
121 RECOMMENDED REFERENCES
CITED REFERENCES
123 CHAPTER 11— SUBSTRUCTURE SYSTEMS AND ELEMENTS
11.1—Introduction
11.2—Bearings
11.2.1 Description
11.2.2 Types and design criteria
11.2.2.1 Elastomeric bearings (Fig. 11.2.2.1)
124 11.2.2.2 Sliding bearings [Fig. 11.2.2.1(c)]
11.2.2.3 “High” load bearings
11.2.2.4 Steel bearings
125 11.2.2.5 Bearings in seismic zones
11.2.2.6 General criteria
126 11.3—Foundations
11.3.1 General
11.3.2 Investigation procedures
11.3.3 Spread footings
11.3.4 Drilled piers
11.3.4.1 General
127 11.3.4.2 Construction consideration
11.3.4.3 Classes of subpiers
11.3.5 Piles
11.3.5.1 General
11.3.5.2 Classes of piles
11.3.5.3 Pile design
128 11.3.5.4 Design criteria
11.3.5.5 Pile load tests
11.3.5.6 Anchorage for uplift
11.3.5.7 Construction considerations
11.3.6 Special types
11.3.6.1 Caissons
129 11.3.6.2 Other types
11.3.7 Special considerations
11.3.7.1 Cofferdams
11.3.7.2 Impact during construction
11.4—Hydraulic requirements
11.4.1 General
11.4.2 Bridge location
11.4.3 Waterway opening
11.4.4 Scour
130 11.4.5 Spur dikes
11.4.6 Slope protection
11.5—Abutments
11.5.1 General
11.5.2 Loads and stability
131 11.5.3 Types of abutments
11.5.3.1 Sill abutments [Fig. 11.5.3 (a) (b) and (c)]
11.5.3.2 Spill through abutments [Fig. 11.5.3 (d)]
11.5.3.3 Closed abutments [Fig. 11.5.3(e) (f) and (g)]
11.5.3.4 Closed cellular abutments [Fig. 11.5.3(h)]
132 11.5.4 Retaining walls
11.5.5 Wing walls
11.5.6 Joints at abutments
11.6—Piers
11.6.1 General description
11.6.2 Pier configurations11-34
135 11.6.3 Connections to the superstructure
11.6.3.1 Monolithic connections
11.6.3.2 Bearings
11.6.3.3 Articulated hinges
11.6.4 Design considerations
11.6.4.1 General
11.6.4.2 Slenderness
136 11.6.4.3 Effective length factors
11.6.4.4 Biaxial bending
137 11.6.4.5 Irregular shapes
11.6.4.6 Tie requirements
138 11.6.5 Post-tensioned piers
11.6.6 Detailing
11.6.6.1 Splices
11.6.6.2 Development requirements
11.6.6.3 Dynamic earthquake requirements
139 11.7—Pier
11.7.1 Fender systems
11.7.2 Debris walls
11.7.3 Crash walls
RECOMMENDED REFERENCES
140 CITED REFERENCES
142 CHAPTER 12— PRECAST CONCRETE
12.1—Introduction
12.1.1 General
12.1.2 Advantages and limitations
143 12.2—Precast concrete superstructure elements
12.2.1 Standard pretensioned concrete I-beams
12.2.2 Precast pretensioned deck panels
12.2.3 Precast trapezoidal concrete beams
12.2.4 Complete precast superstructures
144 12.2.5 Precast concrete slabs for redecking—Existing bridges
12.3—Segmental construction
12.3.1 General
145 12.3.2 Spliced girder construction
12.4—Precast concrete substructures
12.5—Design
12.5.1 General
146 12.5.2 Erection requirements
12.5.3 Handling precast units
12.5.4 Design for erection loads
12.5.5 Creep, shrinkage, and dead load deflection
12.5.6 Crown and superelevation
12.6—Construction
12.6.1 Manufacturing
12.6.2 Transportation and erection
147 12.6.3 Joints and connections
12.6.4 Falsework
RECOMMENDED REFERENCES
CITED REFERENCES
149 CHAPTER 13— DETAILS OF REINFORCEMENT FOR DESIGN AND CONSTRUCTION
13.1—General
13.2—Development and splices of reinforcement
13.2.1 Development of reinforcement— General
13.2.2 Development of positive moment reinforcement
150 13.2.3 Development of negative moment reinforcement
13.2.4 Development of reinforcement in special members
13.2.5 Development length of deformed bars and deformed wire in tension
151 13.2.6 Development length of deformed bars in compression
13.2.7 Development length of bundled bars
13.2.8 Development of standard hooks in tension
13.2.9 Development length combination
13.2.10 Development of welded wire fabric
152 13.2.11 Development length of prestressing strand
13.2.12 Mechanical anchorage
13.2.13 Development of web reinforcement
13.2.14 Splices of reinforcement—General
153 13.2.15 Splices of deformed bars and deformed wire in tension
13.2.16 Splices of deformed bars in compression
13.2.17 Splices of welded deformed wire fabric in tension
154 13.2.18 Splices of welded smooth wire fabric in tension
13.3—Lateral reinforcement for compression members
13.3.1 Spirals
13.3.2 Ties
13.3.3 Prestressing steel
13.3.4 Oversized members
13.3.5 Seismic areas
13.4—Lateral reinforcement for flexural members
13.4.1 Compression reinforcement
13.4.2 Torsion or stress reversal
13.4.3 Seismic areas
13.5—Shrinkage and temperature reinforcement
155 13.6—Standard hooks and minimum bend diameters
13.6.1 Standard hooks
13.6.2 Minimum bend diameters—Main reinforcement
13.6.3 Minimum bend diameters—Ties and stirrups
13.7—Spacing of reinforcement
13.7.1 Cast-in-place concrete
13.7.2 Precast concrete
13.7.3 Multilayers
13.7.4 Lap splices
13.7.5 Bundled bars
13.7.6 Walls and slabs
156 13.7.7 Pretensioning steel
13.7.8 Post-tensioning ducts
13.8—Concrete protection for reinforcement
13.8.1 Minimum cover
13.8.2 Bundled bars
13.8.3 Corrosive environments
13.8.4 Future extensions
13.9—Fabrication
13.10—Surface conditions of reinforcement
13.11—Placing reinforcement
13.11.1 General
13.11.2 Zinc-coated (galvanized) bars
157 13.11.3 Epoxy-coated bars
13.11.4 Welded wire fabric
13.11.5 Splices
13.11.6 Welding
13.11.7 Mechanical connections
13.11.8 Field bending and cutting
13.11.9 Storage and handling of coated reinforcing bars
13.12—Special details for columns
13.12.1 Offsets
13.12.2 Splices
158 13.12.3 Composite columns
RECOMMENDED REFERENCES
CITED REFERENCES
ACI 343R 95 1995
$86.94