ACI 343R 95 1995
$86.94
343R-95: Analysis & Design of Reinforced Concrete Bridge Structures (Repproved 2004)
Published By | Publication Date | Number of Pages |
ACI | 1995 | 158 |
These recommendations, reported by the joint ACI-ASCE Committee 343 on Concrete Bridge Design, provide currently acceptable guidelinesfor the analysis and design of reinforced, prestressed, and partially prestressed concrete bridges based on the state of the art at the rime of writing the report. The provisions recommended herein apply to pedest rian bridges, highway bridges, railroad bridges, airport taxiway bridges, and other special bridge structures. Recommendations for Transit Guideways are given in ACI 358R. The subjects covered in these recommendations are: common terms; general considerations; materials; construction: loads and load combinations; preliminary design: ultimate load analysis and strength design; service load analysis and design: prestressed concrete; superstructure systems and elements; substructure systems and elements; precast concrete: and details of reinforcement. The quality and testing of materials used in construction are covered by reference to the appropriate AASHTO and ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard. Keywords: admixtures; aggregates; anchorage (structural); beam-column frame; beams (supports); bridges (structures); cements; cold weather construction; columns (supports); combined stress; composite construction (concrete and steel); composite construction (concrete to concrete); compressive strength; concrete construction; concretes; concrete slabs;construction joints; construction materials; continuity (structural); cover; curing; deep beams; deflection; earthquake-resistant structures; flexural strength; footings; formwork (construction); frames; hot weather construction; inspection; lightweight concretes; loads (forces); mixing; mixture proportioning; modulus of elasticity; moments; placing; precast concrete; prestressed concrete; prestressing steels; quality control; reinforced concrete; reinforcing steels; serviceability; shear strength; spans; specifications; splicing; strength; structural analysis; structural design; T-beams; torsion; ultimate strength method; water; welded-wire fabric.
PDF Catalog
PDF Pages | PDF Title |
---|---|
1 | CONTENTS |
4 | CHAPTER 1— DEFINITIONS, NOTATION, AND ORGANIZATIONS 1.1—Introduction 1.2—Definitions |
5 | 1.3—Notation |
10 | 1.4—Referenced organizations |
11 | Recommended references |
12 | CHAPTER 2— REQUIREMENTS FOR BRIDGES 2.1—Introduction 2.1.1 General 2.1.2 Alignment |
13 | 2.1.3 Drainage 2.2—Functional considerations 2.2.1 Highway bridges 2.2.1.1 Highway classification 2.2.1.2 Width 2.2.1.3 Clearances 2.2.1.4 Sidewalks 2.2.1.5 Curbs |
14 | 2.2.1.6 Medians 2.2.1.7 Railing 2.2.1.8 Superelevation 2.2.1.9 Surfacing 2.2.1.10 Expansion joints 2.2.2 Railway bridges 2.2.2.1 Railway classification 2.2.2.2 Width 2.2.2.3 Clearances |
15 | 2.2.2.4 Deck and waterproofing 2.2.2.5 Expansion joints 2.2.3 Aircraft runway bridges 2.2.4 Transit bridges 2.2.5 Spans and profile 2.2.5.1 General 2.2.5.2 Stream and flood plain crossings |
16 | 2.2.5.3 Navigable stream crossings 2.2.5.4 Highway crossings (Fig. 2.2.5.4) 2.2.5.5 Railway crossings (Fig. 2.2.5.5) 2.3—Esthetic considerations 2.4—Economic considerations 2.4.1 Criteria for least cost 2.4.2 Alternative designs 2.4.3 Value engineering |
18 | 2.5—Bridge types |
19 | 2.5.1 Deck, half-through, and through types (see Fig.2.5.1) 2.5.2 Simple, cantilever, and continuous span types (see Fig. 2.5.2) 2.5.3 Slab, stringer, and girder types 2.5.3.1 Slab type (see Fig. 2.5.3.1) 2.5.3.2 Stringer type (see Fig. 2.5.3.2) |
20 | 2.5.3.3 Girder type (see Fig. 2.5.3.3) 2.5.4 Rigid-frame type (see Fig. 2.5.4) 2.5.5 Arch type 2.5.5.1 Spandrel or barrel arches (see Fig. 2.5.5.1) 2.5.5.2 Ribbed or open-spandrel arches (see Fig.2.5.5.2) |
21 | 2.5.5.3 Tied arches (see Fig. 2.5.5.3) 2.5.5.4 Long-span arches 2.5.5.5 Splayed arches or space frame 2.5.6 Truss types 2.5.6.1 Vierendeel truss (see Fig. 2.5.6.1) 2.5.7 Cable-stayed types (see Fig. 2.5.7) 2.5.8 Suspension types (see Fig. 2.5.8) |
22 | 2.6—Construction and erection considerations 2.6.1 Cast-in-place and precast concrete 2.6.2 Reinforced, partially prestressed, and prestressed 2.6.3 Composite construction 2.6.4 Post-tensioned segmental construction 2.6.4.1 Box girders 2.6.4.2 I-beams 2.6.4.3 Arches 2.7—Legal considerations 2.7.1 Permits over navigable waterways |
23 | 2.7.2 Environmental laws and national policy |
24 | 2.7.3 Plans, specifications, and contracts 2.7.4 Construction inspection RECOMMENDED REFERENCES |
25 | CITED REFERENCES |
26 | CHAPTER 3— MATERIALS 3.1—Introduction 3.2—Materials 3.2.1 Sources 3.2.2 Specifications and standard practices 3.2.3 Admixtures 3.2.4 Aggregates |
27 | 3.2.5 Cement 3.2.6 Water 3.2.7 Selection of concrete proportions 3.2.8 Curing materials |
28 | 3.2.9 Joint materials 3.2.9.1 Water stops 3.2.9.2 Joint fillers 3.2.9.3 Joint sealants 3.2.9.4 Mechanically locked sealants 3.2.9.5 Steel joints 3.2.10 Bearings |
29 | 3.2.10.1 Elastomeric bearings 3.2.10.2 PTFE slide bearings 3.2.10.3 Steel bearings 3.2.10.4 Pot bearings 3.2.10.5 Shear inhibited disc bearings 3.2.11 Metal reinforcement 3.2.11.1 Reinforcing bars 3.2.11.2 Coated reinforcing bars |
30 | 3.2.11.3 Bar mats 3.2.11.4 Wire 3.2.11.5 Welded wire fabric 3.2.11.6 Prestressing tendons 3.2.11.7 Structural steel, steel pipe, or tubing 3.2.12 Accessories 3.2.12.1 Bar supports |
31 | 3.2.12.2 Side form spacers 3.2.12.3 Tie wire 3.2.12.4 Bar splicing material 3.2.12.5 Tensioning tendon components 3.2.13 Appurtenances 3.2.13.1 General 3.2.13.2 Forms 3.2.13.3 Form coatings 3.2.13.4 Galvanized materials |
32 | 3.2.13.5 Cast iron and stainless steel 3.2.14 Storage of materials 3.2.14.1 Cement 3.2.14.2 Aggregates 3.2.14.3 Metal reinforcement 3.3—Properties 3.3.1 Compressive strength 3.3.2 Tensile strength 3.3.3 Modulus of elasticity and Poisson’s ratio 3.3.4 Creep 3.3.5 Shrinkage |
33 | 3.3.6 Thermal coefficient 3.3.7 State-of-the-art 3.3.8 Reinforcement properties 3.4—Standard specifications and practices 3.4.1 ACI guidelines and standard practices 3.4.2 AREA Manual for Railway Engineering 3.4.3 ASTM standards |
35 | 3.4.4 AASHTO materials specifications 3.4.5 ASTM-AASHTO specification cross-reference |
36 | RECOMMENDED REFERENCES |
37 | CHAPTER 4— CONSTRUCTION CONSIDERATIONS 4.1—Introduction 4.1.1 Definition 4.1.2 Examples4-1 4.1.2.1 Section size 4.1.2.2 Camber |
38 | 4.1.2.3 Construction sequence 4.2—Restrictions 4.3—Goals |
39 | 4.4—Planning 4.5—Site characteristics 4.5.1 Site accessibility 4.5.2 Climate 4.5.2.1 General 4.5.2.2 Air-entrained concrete 4.5.3 Materials availability |
40 | 4.5.4 Temporary foundations 4.6—Environmental restrictions 4.6.1 Falsework 4.6.2 Earthwork 4.6.3 Construction 4.7—Maintenance of traffic 4.7.1 Railroad clearances 4.7.2 Highway clearances |
41 | 4.8—Project needs 4.8.1 Construction sequence 4.8.1.1 Partial-width construction |
42 | 4.8.1.2 Partial-length construction 4.8.1.3 Detour bridges 4.8.2 Construction loads 4.8.2.1 Composite and segmental structures 4.8.2.2 Earthmoving vehicles 4.8.3 Standardization |
43 | 4.9—Design of details 4.9.1 Dimensions 4.9.2 Repetitiveness 4.9.3 Slipforming 4.9.4 Soffit lines 4.9.5 Placement of reinforcement 4.9.6 Placement of anchor bolts 4.9.7 Hinges |
44 | 4.9.8 Fixed end supports 4.9.9 Accuracy of construction 4.9.9.1 Pile location 4.9.9.2 Precast elements 4.10—Selection of structure type 4.10.1 Concrete slab bridges 4.10.1.1 Cast-in-place bridges |
45 | 4.10.1.2 Precast slab bridges 4.10.2 Reinforced concrete T-beams 4.10.2.1 Reinforcement 4.10.2.2 Construction joints 4.10.2.3 Longitudinal joints 4.10.3 Precast, prestressed girders 4.10.3.1 Transportation and handling |
46 | 4.10.3.2 Camber 4.10.4 Nonprestressed reinforced concrete box girders 4.10.4.1 Reinforcement 4.10.4.2 Construction joints 4.10.5 Post-tensioned concrete box girders 4.10.5.1 Falsework 4.10.5.2 Construction options 4.10.6 Post-tensioned segmental construction4-5,4-6 4.10.6.1 Standardization |
47 | 4.10.6.2 Construction loads 4.10.6.3 Design procedure 4.11—Construction problems4-8,4-9 4.11.1 Cracking due to shrinkage and creep |
48 | 4.11.2 Temperature cracking 4.11.3 Cracking due to tendons 4.11.4 Crushing of ducts 4.11.5 Construction joints 4.11.5.1 Joint location 4.11.5.2 Joint configuration |
49 | 4.11.6 Cracking at anchorages 4.11.7 Misalignment of ducts 4.11.8 Miscellaneous 4.12—Alternate designs 4.12.1 General 4.12.2 Value engineering change proposals4-10 |
50 | 4.13—Conclusions RECOMMENDED REFERENCES CITED REFERENCES |
51 | CHAPTER 5— LOADS AND LOAD COMBINATIONS 5.1—Introduction 5.2—Dead loads 5.2.1 Structure dead loads 5.2.2 Superimposed dead loads 5.3—Construction, handling, and erection loads 5.4—Deformation effects 5.4.1 Settlement of supports 5.4.2 Shrinkage and creep |
52 | 5.4.2.1 Shrinkage 5.4.2.2 Creep 5.4.3 Axial load deformations 5.4.4 Thermal effects |
53 | 5.4.5 Prestress effects 5.4.6 Frictional forces 5.5—Environmental loads 5.5.1 Wind loads 5.5.1.1 Selection of procedures 5.5.1.2 General procedure |
55 | 5.5.1.3 Simplified procedure 5.5.2 Snowloads 5.5.3 Earthquake loads 5.5.3.1 Historical |
56 | 5.5.3.2 ATC method 5.5.3.3 AASHTO specifications |
57 | 5.5.4 Earth pressures 5.5.4.1 Active earth pressure 5.5.4.2 At rest earth pressure 5.5.4.3 Passive earth pressure 5.5.4.4 Drag force 5.5.5 Buoyancy 5.5.6 Stream flow pressure 5.5.7 Ice loads 5.5.7.1 Ice buildup on structures |
58 | 5.5.7.2 Dynamic ice pressures 5.5.7.3 Static ice pressure 5.5.8 Debris loads 5.5.9 Wave action 5.5.10 Ship impact 5.6—Pedestrian bridge live loads 5.6.1 Deck live load |
59 | 5.6.2 Railing live load 5.6.3 Provision for overload 5.7—Highway bridge live loads 5.7.1 Standard vehicular live loads 5.7.2 Special truck loads 5.7.2.1 Logging trucks 5.7.2.2 Military loads 5.7.2.3 Overload provisions 5.7.3 Application of vehicular live loading 5.7.3.1 Design traffic lanes 5.7.3.2 Traffic lane units 5.7.3.3 Positioning of live loads 5.7.4 Reduction in load intensity 5.7.5 Distribution of loads to beams 5.7.6 Fatigue |
60 | 5.8—Railroad bridge live loads 5.8.1 Design live loads 5.8.2 Provisions for overload 5.9—Rail transit bridge live loads 5.10—Airport runway bridge loads 5.10.1 Landing gear loads 5.10.2 Impact |
62 | 5.10.3 Application of wheel loads 5.10.3.1 Slabs 5.10.3.2 Beams and girders 5.10.4 Braking forces 5.10.5 Provisions for crash landing loads 5.11—Pipeline and conveyor bridge loads 5.11.1 Fluid loads 5.11.2 Solid loads |
63 | 5.11.3 Equipment loads 5.12—Load combinations RECOMMENDED REFERENCES |
65 | CITED REFERENCES |
66 | CHAPTER 6— PRELIMINARY DESIGN 6.1—Introduction |
67 | 6.2—Factors to be considered 6.2.1 Loads 6.2.1.1 Permanent loads (time invariant) 6.2.1.2 Transient loads (time variant) 6.2.1.3 Exceptional loads 6.2.2 Geometry 6.2.3 Corrosion protection 6.2.4 Esthetic considerations 6.2.5 Subsurface conditions |
68 | 6.2.6 First cost and ease of maintenance 6.2.7 Life-cycle cost 6.2.8 Safety 6.2.9 Waterway crossings—Special requirements 6.2.10 Rail and transit bridges—Special requirements 6.2.11 Prestressed concrete—Special considerations 6.2.12 Environmental exposure 6.3—High priority items 6.3.1 Typical section and alignment: Vertical and horizontal 6.3.2 Span length composition: Uniform or varying |
69 | 6.3.3 Special conditions 6.3.4 Combination with other structures 6.3.5 Environmental impact factors 6.4—Structure types 6.4.1 Nonprestressed concrete slab bridges 6.4.2 Nonprestressed concrete girder bridges 6.4.2.1 T-Beam (Fig. 6.4.1a) |
70 | 6.4.2.2 Nonprestressed concrete box girder (Fig. 6.4.1.b) 6.4.3 Prestressed concrete slab bridges 6.4.3.1 Cast-in-place post-tensioned 6.4.3.2 Precast pretensioned (Fig. 6.4.1f) |
71 | 6.4.4 Prestressed concrete girder bridges 6.4.4.1 Cast-in-place, post-tensioned (Fig. 6.4.1a andFig. 6.4.1b) 6.4.4.2 Precast T-Beam, I-girder, and box girder (Fig. 6.4.1.c, d, and e; and Fig. 6.4.4.2) 6.4.5 Post-tensioned segmental bridges |
72 | 6.4.6 Rigid-frame bridges (Fig. 6.4.6) 6.4.7 Jointless bridges 6.4.8 Arch bridges 6.4.8.1 General (Fig. 6.4.8.1) 6.4.8.2 Spandrel-filled arch (Fig. 6.4.8.2) 6.4.8.3 Barrel arch (Fig. 6.4.8.3) 6.4.8.4 Two-hinged rib open-spandrel arch (Fig. 6.4.8.4) |
73 | 6.4.8.5 Fixed-rib open-spandrel arch (Fig. 6.4.8.5) 6.4.8.6 Tied arch (Fig. 6.4.8.6) 6.4.8.7 Stiffened arch (Fig. 6.4.8.7) 6.4.9 Cable-stayed bridges (Fig. 6.4.9) |
74 | 6.4.10 Suspension bridges 6.4.11 Truss bridges (Fig. 6.4.11a, b, and c) |
75 | 6.4.12 Special systems 6.5—Superstructure initial section proportioning 6.6—Abutments 6.6.1 Types |
76 | 6.6.1.1 Open-end abutments 6.6.1.2 Closed-end abutments |
77 | 6.6.2 Abutment type selection 6.6.3 Bridge abutment approach slab 6.7—Piers and bents 6.7.1 Solid piers (Fig. 6.7.1) 6.7.2 Pile bents (Fig. 6.7.2) 6.7.3 Multicolumn bents (Fig. 6.7.3) |
78 | 6.7.4 Single-column piers (Fig. 6.7.4) 6.7.5 Mushroom piers (Fig. 6.7.5) 6.7.6 Towers 6.8—Appurtenances and details 6.9—Finishes |
79 | CHAPTER 7— STRENGTH DESIGN 7.1—Introduction 7.2—considerations for analysis, design, and review 7.2.1 General 7.2.2 Stiffness 7.2.3 Span length 7.2.4 Analysis 7.2.5 Redistribution |
80 | 7.2.6 Composite concrete construction 7.2.6.1 General considerations 7.2.6.2 Shoring 7.2.6.3 Vertical shear 7.2.6.4 Horizontal shear 7.2.7 T-girder construction 7.2.8 Box girder construction 7.2.8.1 General |
81 | 7.2.8.2 Lateral distribution of loads for bending moment 7.2.8.3 Effective compression flange width 7.2.8.4 Slab and web thickness 7.2.8.5 Top and bottom slab reinforcement 7.2.8.6 Diaphragms 7.2.9 Limiting dimensions for members 7.2.9.1 General 7.2.9.2 Compression members 7.2.9.3 Flexural members 7.3—Strength requirements 7.3.1 Required strength 7.3.2 Strength |
82 | 7.3.3 Design assumptions 7.3.4 Flexure 7.3.4.1 Minimum reinforcement of nonprestressed flexural members |
83 | 7.3.4.2 Maximum reinforcement of nonprestressed flexural members 7.3.4.3 Rectangular sections with nonprestressed tension reinforcement only 7.3.4.4 Flanged sections with tension reinforcement only 7.3.4.5 Rectangular sections with compression reinforcement |
84 | 7.3.4.6 Other nonprestressed cross sections 7.3.4.7 Prestressed concrete members |
85 | 7.3.4.8 Special recommendations for slabs 7.3.5 Nonprestressed compression members with or without flexure 7.3.5.1 General requirements 7.3.5.2 Limits for reinforcement of compression members 7.3.5.3 Compression member strength 7.3.5.4 Biaxial loading |
86 | 7.3.6 Slenderness effects in compression members 7.3.6.1 General 7.3.6.2 Unsupported length 7.3.6.3 Radius of gyration 7.3.6.4 Effective length factor and lateral stability 7.3.6.5 Moment magnification |
87 | 7.3.7 Shear strength required 7.3.8 Shear strength provided by concrete for nonprestressed members 7.3.8.1 Simplified strength calculations |
88 | 7.3.8.2 Detailed strength calculations 7.3.9 Shear strength provided by concrete for prestressed members 7.3.9.1 Basic strength calculation 7.3.9.2 Detailed strength calculations |
89 | 7.3.9.3 Strength reduction due to transfer length and bonding 7.3.10 Lightweight concrete shear strength 7.3.11 Shear strength provided by shear reinforcement 7.3.11.1 Types of shear reinforcement 7.3.11.2 Spacing limits for shear reinforcement 7.3.11.3 Minimum shear reinforcement |
90 | 7.3.11.4 Design of shear reinforcement 7.3.12 Combined shear and torsion strength for nonprestressed members with rectangular, flanged, or box sections 7.3.12.1 General 7.3.12.2 Torsional moment strength required 7.3.12.3 Torsional moment strength provided by concrete |
91 | 7.3.12.4 Torsion reinforcement recommendations 7.3.12.5 Design of torsion reinforcement 7.3.13 Combined shear and torsion strength for prestressed members 7.3.14 Shear-friction 7.3.14.1 General |
92 | 7.3.14.2 Shear-friction design method 7.3.15 Horizontal shear design for composite concrete flexural members 7.3.15.1 Calculations for shear 7.3.15.2 Allowable shear 7.3.15.3 Ties for horizontal shear 7.3.16 Special shear provisions for deep flexural members |
93 | 7.3.17 Special shear provisions for brackets and corbels 7.3.18 Special shear recommendations for slabs and footings 7.3.18.1 General |
94 | 7.3.18.2 Slabs and footings without shear reinforcement 7.3.18.3 Slabs and footings with shear reinforcement 7.3.19 Transfer of moment to columns 7.3.20 Bearing strength RECOMMENDED REFERENCES CITED REFERENCES |
96 | CHAPTER 8— SERVICE LOAD ANALYSIS AND DESIGN 8.1—Basic assumptions 8.1.1 Nonprestressed members 8.1.2 Prestressed members 8.2—Serviceability requirements 8.2.1 Nonprestressed flexural members |
97 | 8.2.2 Prestressed members 8.3—Fatigue of materials 8.3.1 Reinforcing bars 8.3.2 Prestressing steel 8.4—Distribution of reinforcement in flexural members 8.4.1 General |
98 | 8.4.2 T-beam flanges 8.4.3 Deep members 8.5—Control of deflections 8.5.1 General 8.5.2 Superstructure depth limitations 8.5.3 Nonprestressed members 8.5.3.1 Computation of immediate deflection 8.5.3.2 Computation of long-time deflections |
99 | 8.5.4 Prestressed members 8.5.4.1 Computation of immediate deflection 8.5.4.2 Computation of long-time deflection 8.6—Permissible stresses for prestressed flexural members 8.6.1 Temporary stresses 8.6.2 Service load stresses 8.7—Service load design 8.7.1 Flexure |
100 | 8.7.2 Development of reinforcement 8.7.3 Compression members 8.7.4 Shear 8.7.4.1 General 8.7.4.2 Concrete 8.7.4.3 Reinforcement 8.7.4.4 Deep members 8.8—Thermal effects RECOMMENDED REFERENCES CITED REFERENCES |
102 | CHAPTER 9— PRESTRESSED CONCRETE 9.1—Introduction 9.1.1 General 9.1.2 Codes 9.2—General design considerations 9.2.1 General 9.2.2 Critical loads 9.2.3 Crack control 9.2.4 Deformation stresses 9.2.5 Buckling 9.3—Basic assumptions |
103 | 9.4—Flexure, shear 9.5—Permissible stresses 9.6—Prestress losses 9.6.1 General 9.6.2 Anchorage slip 9.6.3 Friction losses 9.6.3.1 Post-tensioned construction |
104 | 9.6.3.2 Pretensioned construction 9.6.4 Elastic and time-dependent losses 9.6.4.1 Approximation of losses 9.6.4.2 Calculation of losses |
105 | 9.6.4.3 Losses for deflection calculations 9.6.4.4 Loss calculations for unusual bridges 9.6.4.5 Effect of nonprestressed reinforcement 9.7—Combined tension and bending 9.8—Combined compression and bending 9.9— Combination of prestressed and nonprestressed reinforcement— Partial prestressing |
106 | 9.10—Composite structures 9.10.1 General 9.10.2 Shear transfer 9.10.3 Shear capacity 9.10.4 Vertical ties 9.10.5 Shrinkage stresses 9.11—Crack control 9.11.1 General 9.11.2 Construction using bonded tendons 9.11.3 Construction using unbonded tendons |
107 | 9.12—Repetitive loads 9.12.1 Construction using unbonded tendons 9.12.2 Diagonal tension 9.12.3 Fatigue 9.13—End regions and laminar cracking 9.13.1 Cracking 9.13.1.1 Bursting or splitting cracks 9.13.1.2 Spalling cracks 9.13.1.3 Section change cracks 9.13.1.4 Reinforcement details 9.13.2 End blocks |
108 | 9.13.3 Bearing under anchorages 9.13.3.1 Maximum stresses 9.13.3.2 Conical anchorages 9.13.3.3 Plate thickness 9.13.4 Inclined tendons 9.13.5 Laminar cracking 9.14—Continuity 9.14.1 General 9.14.2 Continuous bridges 9.14.2.1 General 9.14.2.2 Minimum dead load 9.14.3 Bridges composed of girders made continuous 9.14.3.1 General 9.14.3.2 Positive moment connection at piers |
109 | 9.14.3.3 Negative moments 9.14.3.4 Compressive stress at piers under service loads 9.15—Torsion 9.15.1 General 9.15.2 Curved bridges 9.15.3 Design neglecting torsional stiffness 9.15.4 Design including torsional stiffness 9.16—Cover and spacing of prestressing steel 9.17—Unbonded tendons 9.17.1 General 9.17.2 Corrosion protection 9.18—Embedment of pretensioning strands |
110 | 9.19—Concrete 9.19.1 Admixtures 9.19.2 Strength 9.20—Joints and bearings for precast members 9.20.1 General 9.20.2 Design criteria 9.21—Curved box girders RECOMMENDED REFERENCES CITED REFERENCES |
113 | CHAPTER 10— SUPERSTRUCTURE SYSTEMS AND ELEMENTS 10.1—Introduction 10.2—Superstructure structural types 10.2.1 Nonprestressed concrete slab bridges 10.2.1.1 General 10.2.1.2 Cast-in-place 10.2.1.3 Precast 10.2.2 Nonprestressed concrete girder bridges 10.2.3 Prestressed concrete slab bridges 10.2.3.1 General |
114 | 10.2.3.2 Cast-in-place 10.2.3.3 Precast 10.2.4 Prestressed concrete girder bridges 10.2.4.1 General 10.2.4.2 Cast-in-place 10.2.4.3 Precast |
115 | 10.2.5 Rigid frame bridges 10.2.5.1 General 10.2.5.2 Types of rigid frames 10.2.6 Arch bridges 10.2.6.1 General 10.2.6.2 Types |
116 | 10.2.7 Truss bridges 10.2.8 Cable-stayed bridges 10.2.8.1 General 10.2.8.2 Stiffening system 10.2.8.3 Towers 10.2.8.4 Cable systems 10.2.9 Suspension bridges 10.2.9.1 General |
117 | 10.2.9.2 Stiffening system 10.2.9.3 Towers 10.2.9.4 Suspension system 10.3—Methods of superstructure analysis 10.3.1 General 10.3.2 Elastic methods 10.3.3 Model analysis 10.3.4 Nonlinear methods 10.4—Design of deck slabs 10.4.1 General 10.4.2 Empirical methods 10.4.2.1 Limitations 10.4.2.2 One-way slab |
118 | 10.4.2.3 Two-way slab 10.4.2.4 Ribbed slabs 10.4.2.5 Cantilever slabs 10.5—Distribution of loads to beams |
119 | 10.5.1 T-beam or precast I-girder and box girder bridges 10.5.1.1 Interior beams 10.5.1.2 Exterior beams 10.5.1.3 Total capacity of longitudinal beams 10.5.1.4 Bending moments for T- and I-girder bridges with cross girders |
120 | 10.5.2 Spread box-beam bridges 10.5.3 Multi-beam precast concrete bridge 10.5.4 Transverse floor beams 10.5.5 Position of loads for shear 10.6—Skew bridges 10.6.1 General 10.6.2 Bending moments 10.6.3 Reactions |
121 | RECOMMENDED REFERENCES CITED REFERENCES |
123 | CHAPTER 11— SUBSTRUCTURE SYSTEMS AND ELEMENTS 11.1—Introduction 11.2—Bearings 11.2.1 Description 11.2.2 Types and design criteria 11.2.2.1 Elastomeric bearings (Fig. 11.2.2.1) |
124 | 11.2.2.2 Sliding bearings [Fig. 11.2.2.1(c)] 11.2.2.3 “High” load bearings 11.2.2.4 Steel bearings |
125 | 11.2.2.5 Bearings in seismic zones 11.2.2.6 General criteria |
126 | 11.3—Foundations 11.3.1 General 11.3.2 Investigation procedures 11.3.3 Spread footings 11.3.4 Drilled piers 11.3.4.1 General |
127 | 11.3.4.2 Construction consideration 11.3.4.3 Classes of subpiers 11.3.5 Piles 11.3.5.1 General 11.3.5.2 Classes of piles 11.3.5.3 Pile design |
128 | 11.3.5.4 Design criteria 11.3.5.5 Pile load tests 11.3.5.6 Anchorage for uplift 11.3.5.7 Construction considerations 11.3.6 Special types 11.3.6.1 Caissons |
129 | 11.3.6.2 Other types 11.3.7 Special considerations 11.3.7.1 Cofferdams 11.3.7.2 Impact during construction 11.4—Hydraulic requirements 11.4.1 General 11.4.2 Bridge location 11.4.3 Waterway opening 11.4.4 Scour |
130 | 11.4.5 Spur dikes 11.4.6 Slope protection 11.5—Abutments 11.5.1 General 11.5.2 Loads and stability |
131 | 11.5.3 Types of abutments 11.5.3.1 Sill abutments [Fig. 11.5.3 (a) (b) and (c)] 11.5.3.2 Spill through abutments [Fig. 11.5.3 (d)] 11.5.3.3 Closed abutments [Fig. 11.5.3(e) (f) and (g)] 11.5.3.4 Closed cellular abutments [Fig. 11.5.3(h)] |
132 | 11.5.4 Retaining walls 11.5.5 Wing walls 11.5.6 Joints at abutments 11.6—Piers 11.6.1 General description 11.6.2 Pier configurations11-34 |
135 | 11.6.3 Connections to the superstructure 11.6.3.1 Monolithic connections 11.6.3.2 Bearings 11.6.3.3 Articulated hinges 11.6.4 Design considerations 11.6.4.1 General 11.6.4.2 Slenderness |
136 | 11.6.4.3 Effective length factors 11.6.4.4 Biaxial bending |
137 | 11.6.4.5 Irregular shapes 11.6.4.6 Tie requirements |
138 | 11.6.5 Post-tensioned piers 11.6.6 Detailing 11.6.6.1 Splices 11.6.6.2 Development requirements 11.6.6.3 Dynamic earthquake requirements |
139 | 11.7—Pier 11.7.1 Fender systems 11.7.2 Debris walls 11.7.3 Crash walls RECOMMENDED REFERENCES |
140 | CITED REFERENCES |
142 | CHAPTER 12— PRECAST CONCRETE 12.1—Introduction 12.1.1 General 12.1.2 Advantages and limitations |
143 | 12.2—Precast concrete superstructure elements 12.2.1 Standard pretensioned concrete I-beams 12.2.2 Precast pretensioned deck panels 12.2.3 Precast trapezoidal concrete beams 12.2.4 Complete precast superstructures |
144 | 12.2.5 Precast concrete slabs for redecking—Existing bridges 12.3—Segmental construction 12.3.1 General |
145 | 12.3.2 Spliced girder construction 12.4—Precast concrete substructures 12.5—Design 12.5.1 General |
146 | 12.5.2 Erection requirements 12.5.3 Handling precast units 12.5.4 Design for erection loads 12.5.5 Creep, shrinkage, and dead load deflection 12.5.6 Crown and superelevation 12.6—Construction 12.6.1 Manufacturing 12.6.2 Transportation and erection |
147 | 12.6.3 Joints and connections 12.6.4 Falsework RECOMMENDED REFERENCES CITED REFERENCES |
149 | CHAPTER 13— DETAILS OF REINFORCEMENT FOR DESIGN AND CONSTRUCTION 13.1—General 13.2—Development and splices of reinforcement 13.2.1 Development of reinforcement— General 13.2.2 Development of positive moment reinforcement |
150 | 13.2.3 Development of negative moment reinforcement 13.2.4 Development of reinforcement in special members 13.2.5 Development length of deformed bars and deformed wire in tension |
151 | 13.2.6 Development length of deformed bars in compression 13.2.7 Development length of bundled bars 13.2.8 Development of standard hooks in tension 13.2.9 Development length combination 13.2.10 Development of welded wire fabric |
152 | 13.2.11 Development length of prestressing strand 13.2.12 Mechanical anchorage 13.2.13 Development of web reinforcement 13.2.14 Splices of reinforcement—General |
153 | 13.2.15 Splices of deformed bars and deformed wire in tension 13.2.16 Splices of deformed bars in compression 13.2.17 Splices of welded deformed wire fabric in tension |
154 | 13.2.18 Splices of welded smooth wire fabric in tension 13.3—Lateral reinforcement for compression members 13.3.1 Spirals 13.3.2 Ties 13.3.3 Prestressing steel 13.3.4 Oversized members 13.3.5 Seismic areas 13.4—Lateral reinforcement for flexural members 13.4.1 Compression reinforcement 13.4.2 Torsion or stress reversal 13.4.3 Seismic areas 13.5—Shrinkage and temperature reinforcement |
155 | 13.6—Standard hooks and minimum bend diameters 13.6.1 Standard hooks 13.6.2 Minimum bend diameters—Main reinforcement 13.6.3 Minimum bend diameters—Ties and stirrups 13.7—Spacing of reinforcement 13.7.1 Cast-in-place concrete 13.7.2 Precast concrete 13.7.3 Multilayers 13.7.4 Lap splices 13.7.5 Bundled bars 13.7.6 Walls and slabs |
156 | 13.7.7 Pretensioning steel 13.7.8 Post-tensioning ducts 13.8—Concrete protection for reinforcement 13.8.1 Minimum cover 13.8.2 Bundled bars 13.8.3 Corrosive environments 13.8.4 Future extensions 13.9—Fabrication 13.10—Surface conditions of reinforcement 13.11—Placing reinforcement 13.11.1 General 13.11.2 Zinc-coated (galvanized) bars |
157 | 13.11.3 Epoxy-coated bars 13.11.4 Welded wire fabric 13.11.5 Splices 13.11.6 Welding 13.11.7 Mechanical connections 13.11.8 Field bending and cutting 13.11.9 Storage and handling of coated reinforcing bars 13.12—Special details for columns 13.12.1 Offsets 13.12.2 Splices |
158 | 13.12.3 Composite columns RECOMMENDED REFERENCES CITED REFERENCES |