Shopping Cart

No products in the cart.

API PUBL 4678-1999

$30.55

Fugitive Emissions from Refinery Process Drains

Published By Publication Date Number of Pages
API 1999 97
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

It was originally intended that a three-zone emissions model be developed with the ability to estimate VOC emissions from a falling film, water seal, and channel located below a drain. It was impossible to separate (experimentally) the effects of a falling film from volatilization in an underlying channel or water seal. As such, the effects of a falling film were "lumped" into mass transfer in an underlying channel or water seal.

Five volatile tracers were used in determining mass transfer parameters for the two-zone model. These tracers spanned a wide range of Henry's law constants, i.e., 0.0015 m3liq/m3gas to 7.3 m3liq/m3gas at 25 ºC.

A total of 76 experiments were completed with the use of two separate experimental systems. Twelve of these experiments were completed to study gas-liquid mass transfer in the channel below a process drain. Forty experiments were completed to determine rates of air entrainment in a water seal. Seventeen experiments were completed to study the degree of chemical equilibrium between entrained air bubbles and surrounding liquid in a water seal. Seven experiments were completed to study volatilization across the upstream surface of a water seal. Four additional experiments were completed to ascertain volatilization from a falling film, but were inconclusive and not reported herein. No experiments were completed to determine emissions from a water seal below an inactive drain. No experiments were completed to assess gas-liquid mass transfer in the channel below inactive drains.

Several variables can affect mass transfer in a process drain. The primary variables that were studied included process flowrate, hydrodynamic regime (disintegrated or intact liquid flow), and Henry's law constant. The effects of molecular-diffusion coefficients were accounted for in some correlations. The effects of temperature were accounted for through variations in liquid molecular diffusion coefficients, water viscosity and, most importantly, Henry's law constant.

API PUBL 4678-1999
$30.55