BS EN 253:2009+A2:2015
$198.66
District heating pipes. Preinsulated bonded pipe systems for directly buried hot water networks. Pipe assembly of steel service pipe, polyurethane thermal insulation and outer casing of polyethylene
Published By | Publication Date | Number of Pages |
BSI | 2015 | 56 |
This European Standard specifies requirements and test methods for straight lengths of prefabricated thermally insulated pipe-in-pipe assemblies for directly buried hot water networks, comprising a steel service pipe from DN 15 to DN 1200, rigid polyurethane foam insulation and an outer casing of polyethylene. The pipe assembly may also include the following additional elements: measuring wires, spacers and diffusion barriers.
This standard applies only to insulated pipe assemblies, for continuous operation with hot water at various temperatures up to 120 °C and occasionally with a peak temperature up to 140 °C.
The estimation of expected thermal life with continuous operation at various temperatures is outlined in Annex B.
PDF Catalog
PDF Pages | PDF Title |
---|---|
4 | Contents Page |
7 | European foreword |
8 | Introduction |
9 | 1 Scope 2 Normative references |
10 | 3 Terms and definitions |
12 | 4 Requirements 4.1 General |
13 | 4.2 Steel service pipe 4.2.1 Specification 4.2.2 Diameter |
14 | 4.2.3 Wall thickness |
15 | 4.2.4 Surface condition |
16 | 4.3 Casing 4.3.1 Material properties 4.3.1.1 Material composition 4.3.1.2 Melt mass-flow rate 4.3.1.3 Thermal stability 4.3.1.4 Use of rework material 4.3.2 Casing properties 4.3.2.1 Nominal outside diameter 4.3.2.2 Wall thickness |
17 | 4.3.2.3 Appearance, surface finish, pipe ends |
18 | 4.3.2.4 Elongation at break 4.3.2.5 Heat reversion 4.3.2.6 Stress crack resistance 4.4 Polyurethane rigid foam insulation (PUR) 4.4.1 Composition 4.4.2 Cell structure 4.4.3 Compressive strength 4.4.4 Foam density 4.4.5 Water absorption at elevated temperature |
19 | 4.5 Pipe assembly 4.5.1 General 4.5.2 Pipe ends 4.5.3 Diameter and wall thickness of the casing |
20 | 4.5.4 Centre line deviation 4.5.5 Expected thermal life and long term temperature resistance 4.5.5.1 General remarks 4.5.5.2 Shear strength 4.5.6 Thermal conductivity in unaged condition |
21 | 4.5.7 Thermal conductivity at artificially aged condition 4.5.8 Impact resistance 4.5.9 Long term creep resistance and modulus 4.5.10 Surface conditions at delivery 4.5.11 Measuring wires for surveillance systems 5 Test methods 5.1 General conditions and test specimens 5.1.1 General conditions 5.1.2 Test specimens |
22 | 5.2 Casing 5.2.1 Appearance and surface finish 5.2.2 Elongation at break |
23 | 5.2.3 Carbon black dispersion, homogeneity 5.2.4 Stress crack resistance test |
24 | 5.3 Polyurethane rigid foam insulation (PUR) 5.3.1 Composition 5.3.2 Cell structure 5.3.3 Compressive strength |
25 | 5.3.4 Foam density 5.3.5 Water absorption 5.4 Pipe assembly 5.4.1 Axial shear strength 5.4.1.1 Test specimen 5.4.1.2 Test procedure |
26 | 5.4.1.3 Calculation of shear strength 5.4.1.4 Axial shear strength at 23 C 5.4.1.5 Axial shear strength at 140 C |
27 | 5.4.2 Tangential shear strength 5.4.2.1 Test specimen 5.4.2.2 Test procedure |
28 | 5.4.2.3 Calculation of shear strength |
29 | 5.4.3 Shear strength of the pipe assembly after ageing 5.4.3.1 Pipe specimen and ageing 5.4.3.2 Test procedure 5.4.4 Thermal conductivity in unaged condition 5.4.5 Thermal conductivity at artificially aged condition 5.4.6 Impact resistance 5.4.7 Long term creep resistance and modulus at 140 C |
32 | 6 Marking 6.1 General 6.2 Steel service pipe 6.3 Casing |
33 | 6.4 Pipe assembly |
34 | Annex A (informative) Relation between actual continuous operating conditions and accelerated ageing test conditions |
36 | Annex B (informative) Calculation of the minimum expected thermal life with operation at various temperatures with respect to PUR foam performance |
37 | Annex C (normative) !Calculated Continuous Operating Temperature (CCOT) C.1 General C.2 Principle C.3 Symbols |
38 | C.4 Ageing and shear strength determinations C.5 Calculations C.5.1 Determination of the thermal life at different ageing temperatures C.5.2 Adoption to the Arrhenius relation |
39 | C.5.3 Calculated continuous operating temperature, CCOT |
40 | Annex D (informative) Guidelines for inspection and testing D.1 General D.2 Manufacturer’s type test D.3 Manufacturer’s quality control D.4 External inspection D.5 Manufacturer’s responsibility |
44 | Annex E (informative) Radial creep behaviour of the polyurethane foam (PUR) |
45 | Annex F (normative) Thermal conductivity of pre-insulated pipes – Test procedure F.1 Scope F.2 Requirements (EN ISO 8497:1996, Clause 5) F.2.1 Test specimen (EN ISO 8497:1996, 5.1) F.2.2 Operating temperature (EN ISO 8497:1996, 5.2) F.2.3 Types of apparatus (EN ISO 8497:1996, 5.5) F.3 Apparatus (EN ISO 8497:1996, Clause 7) F.3.1 Guarded end apparatus F.3.2 Calibrated end apparatus |
46 | F.3.3 Dimensions (EN ISO 8497:1996, 7.2) F.3.4 Heater pipe surface temperature F.4 Test specimens (EN ISO 8497:1996, Clause 8) F.4.1 Conditioning (EN ISO 8497:1996, 8.4) F.4.2 Dimension measurement (EN ISO 8497:1996, 8.5) F.4.3 Surface temperature measurement F.4.4 Location of temperature sensors (EN ISO 8497:1996, 8.6) F.5 Procedure (EN ISO 8497:1996, Clause 9) F.5.1 Test length (EN ISO 8497:1996, 9.1.1) F.5.2 Diameter (EN ISO 8497:1996, 8.5) F.5.3 Thickness of casing |
47 | F.5.4 Ambient requirements (EN ISO 8497:1996, 9.2) F.5.5 Test pipe temperature (EN ISO 8497:1996, 9.3) F.5.6 Power supply (EN ISO 8497:1996, 7.9) F.5.7 Axial heat loss$ F.5.8 Test period and stability (EN ISO 8497:1996, 9.5.3) F.6 Calculations (EN ISO 8497:1996, Clause 11) F.6.1 Thermal conductivity (EN ISO 8497:1996, 3.5) |
48 | F.7 Symbols and units (EN ISO 8497:1996 Clause 4) |
50 | Annex G (informative) National A-deviations G.1 Swedish national legislative deviations on steel service pipes |
51 | Annex H (informative) Main changes from the previous edition of EN 253 |
54 | Annex I (informative) Waste treatment and recycling |
55 | Bibliography |