Shopping Cart

No products in the cart.

BS ISO 20998-2:2013

$167.15

Measurement and characterization of particles by acoustic methods – Guidelines for linear theory

Published By Publication Date Number of Pages
BSI 2013 42
Guaranteed Safe Checkout
Category:

If you have any questions, feel free to reach out to our online customer service team by clicking on the bottom right corner. We’re here to assist you 24/7.
Email:[email protected]

This part of ISO 20998 describes ultrasonic attenuation spectroscopy methods for determining the size distributions of a particulate phase dispersed in a liquid at dilute concentrations, where the ultrasonic attenuation spectrum is a linear function of the particle volume fraction. In this regime, particle–particle interactions are negligible. Colloids, dilute dispersions, and emulsions are within the scope of this part of ISO 20998. The typical particle size for such analysis ranges from 10 nm to 3 mm, although particles outside this range have also been successfully measured. For solid particles in suspension, size measurements can be made at concentrations typically ranging from 0,1 % volume fraction up to 5 % volume fraction, depending on the density contrast between the solid and liquid phases, the particle size, and the frequency range.

NOTE See References [9][10].

For emulsions, measurements may be made at much higher concentrations. These ultrasonic methods can be used to monitor dynamic changes in the size distribution.

While it is possible to determine the particle size distribution from either the attenuation spectrum or the phase velocity spectrum, the use of attenuation data alone is recommended. The relative variation in phase velocity due to changing particle size is small compared to the mean velocity, so it is often difficult to determine the phase velocity with a high degree of accuracy, particularly at ambient temperature. Likewise, the combined use of attenuation and velocity spectra to determine the particle size is not recommended. The presence of measurement errors (i.e. “noise”) in the magnitude and phase spectra can increase the ill-posed nature of the problem and reduce the stability of the inversion.

PDF Catalog

PDF Pages PDF Title
6 Foreword
7 Introduction
9 Section sec_1
Section sec_2
Section sec_3
Section sec_3.1
1 Scope
2 Normative references
3 Terms and definitions
10 Section sec_3.2
Section sec_3.3
Section sec_3.4
Section sec_4
4 Symbols and abbreviated terms
12 Section sec_5
Section sec_5.1
Section sec_5.2
5 Mechanism of attenuation (dilute case)
5.1 Introduction
5.2 Excess attenuation coefficient
13 Section sec_5.3
Section sec_5.3.1
Section sec_5.3.2
Section sec_5.3.3
Section sec_5.4
Section sec_5.4.1
5.3 Specific attenuation mechanisms
5.4 Linear models
14 Section sec_5.4.2
Table tab_1
15 Table tab_2
Section sec_6
Section sec_6.1
6 Determination of particle size
6.1 Introduction
16 Section sec_6.2
Section sec_6.2.1
Section sec_6.2.2
6.2 Inversion approaches used to determine PSD
17 Section sec_6.3
Section sec_7
Section sec_7.1
Section sec_7.2
Section sec_7.2.1
Section sec_7.2.2
6.3 Limits of application
7 Instrument qualification
7.1 Calibration
7.2 Precision
18 Section sec_7.2.3
Section sec_7.3
Section sec_7.3.1
Section sec_7.3.2
Section sec_7.3.3
Section sec_7.3.4
Section sec_7.3.5
7.3 Accuracy
19 Section sec_8
8 Reporting of results
20 Annex sec_A
Annex A
(informative)

Viscoinertial loss model

21 Annex sec_B
Annex sec_B.1
Figure fig_B.1
Annex sec_B.2
Annex B
(informative)

ECAH theory and limitations

23 Annex sec_B.3
24 Annex sec_C
Annex C
(informative)

Example of a semi-empirical model

25 Table tab_c
Figure fig_C.1
27 Annex sec_D
Annex D
(informative)

Iterative fitting

28 Figure fig_D.1
29 Annex sec_E
Table tab_E.1
Table tab_E.2
Table tab_E.3
Annex E
(informative)

Physical parameter values for selected materials

30 Annex sec_F
Annex sec_F.1
Annex sec_F.2
Table tab_d
Figure fig_.1
Annex F
(informative)

Practical example of PSD measurement

31 Table tab_F.1
Annex sec_F.3
32 Table tab_e
Figure fig_.2
Table tab_F.2
Annex sec_F.4
33 Table tab_F.3
34 Annex sec_F.5
Table tab_F.4
35 Annex sec_F.6
Table tab_f
Figure fig_.3
Table tab_F.5
36 Table tab_g
Figure fig_.4
Table tab_F.6
37 Table tab_h
Figure fig_.5
38 Reference ref_1
Reference ref_2
Reference ref_3
Reference ref_4
Reference ref_5
Reference ref_6
Reference ref_7
Reference ref_8
Reference ref_9
Reference ref_10
Reference ref_11
Reference ref_12
Reference ref_13
Reference ref_14
Reference ref_15
Reference ref_16
Reference ref_17
Reference ref_18
Reference ref_19
Reference ref_20
Reference ref_21
Bibliography
39 Reference ref_22
Reference ref_23
Reference ref_24
Reference ref_25
Reference ref_26
Reference ref_27
Reference ref_28
Reference ref_29
Reference ref_30
Reference ref_31
Reference ref_32
Reference ref_33
Reference ref_34
BS ISO 20998-2:2013
$167.15