{"id":14393,"date":"2024-10-16T21:36:16","date_gmt":"2024-10-16T21:36:16","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/astm-e2472-2006\/"},"modified":"2024-10-24T12:00:39","modified_gmt":"2024-10-24T12:00:39","slug":"astm-e2472-2006","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/astm\/astm-e2472-2006\/","title":{"rendered":"ASTM-E2472 2006"},"content":{"rendered":"<\/p>\n

1.1 This standard covers the determination of the resistance to stable crack extension in metallic materials in terms of the critical crack-tip-opening angle (CTOA c ), c and\/or the crack-opening displacement (COD), 5 resistance curve () . This method applies specifically to fatigue pre-cracked specimens that exhibit low constraint (crack-length-to-thickness and un-cracked ligament-to-thickness ratios greater than or equal to 4) and that are tested under slowly increasing remote applied displacement. The recommended specimens are the compact-tension, C(T), and middle-crack-tension, M(T), specimens. The fracture resistance determined in accordance with this standard is measured as c (critical CTOA value) and\/or 5 (critical COD resistance curve) as a function of crack extension. Both fracture resistance parameters are characterized using either a single-specimen or multiple-specimen procedures. These fracture quantities are determined under the opening mode (Mode I) of loading. Influences of environment and rapid loading rates are not covered in this standard, but the user must be aware of the effects that the loading rate and laboratory environment may have on the fracture behavior of the material.<\/p>\n

1.2 Materials that are evaluated by this standard are not limited by strength, thickness, or toughness, if the crack-length-to-thickness (a\/B) ratio and the ligament-to-thickness (b\/B) ratio are greater than or equal to 4, which ensures relatively low and similar global crack-front constraint for both the C(T) and M(T) specimens (, ) .<\/p>\n

1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses (English) are for information purposes only.<\/p>\n

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nScope
Referenced Documents
Terminology <\/td>\n<\/tr>\n
2<\/td>\nSummary of Test Method <\/td>\n<\/tr>\n
3<\/td>\nSignificance and Use
Apparatus <\/td>\n<\/tr>\n
4<\/td>\nFIG. 1 <\/td>\n<\/tr>\n
5<\/td>\nFIG. 2 <\/td>\n<\/tr>\n
6<\/td>\nFIG. 3 <\/td>\n<\/tr>\n
8<\/td>\nSpecimen Configuration, Dimensions, and Preparation
FIG. 4 <\/td>\n<\/tr>\n
9<\/td>\nFIG. 5 <\/td>\n<\/tr>\n
10<\/td>\nFIG. 6
FIG. 7 <\/td>\n<\/tr>\n
11<\/td>\nProcedure <\/td>\n<\/tr>\n
12<\/td>\nMeasurements and Interpretation <\/td>\n<\/tr>\n
13<\/td>\nFIG. 8 <\/td>\n<\/tr>\n
14<\/td>\nFIG. 9 <\/td>\n<\/tr>\n
15<\/td>\nFIG. 10
FIG. 11 <\/td>\n<\/tr>\n
16<\/td>\nFIG. 12 <\/td>\n<\/tr>\n
17<\/td>\nFIG. 13 <\/td>\n<\/tr>\n
18<\/td>\nReport
Precision and Bias
Keywords
A1. SPECIAL REQUIREMENTS FOR TESTING COMPACT-TENSION SPECIMENS
A1.1 Specimen <\/td>\n<\/tr>\n
19<\/td>\nA1.2 Apparatus
A1.3 Specimen Preparation
A1.4 Compact-Tension Specimen Testing
FIG. A1.1 <\/td>\n<\/tr>\n
20<\/td>\nA2. SPECIAL REQUIREMENTS FOR TESTING MIDDLE-CRACK-TENSION SPECIMENS
A2.1 Specimen
A2.2 Apparatus
A2.3 Specimen Preparation
A2.4 Middle-Crack-Tension Specimen Testing <\/td>\n<\/tr>\n
21<\/td>\nFIG. A2.1 <\/td>\n<\/tr>\n
22<\/td>\nA3. TEST REPORTS
TABLE A3.1 <\/td>\n<\/tr>\n
23<\/td>\nA4. POWER-LAW FIT TO 5 AGAINST CRACK-EXTENSION DATA
A4.1
A4.2
A4.3
TABLE A3.2
TABLE A3.3 <\/td>\n<\/tr>\n
24<\/td>\nX1. GUIDELINES FOR ANALYZING STABLE TEARING USING FINITE-ELEMENT METHODS
X1.1
X2. CORRELATION BETWEEN 5 RESISTANCE CURVES AND CRITICAL CTOA
X2.1
X2.2
X2.3
X2.4 <\/td>\n<\/tr>\n
25<\/td>\nREFERENCES
FIG. X2.1 <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

E2472-06 Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASTM<\/b><\/a><\/td>\n2006<\/td>\n26<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":14394,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[1088,2637],"product_tag":[],"class_list":{"0":"post-14393","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-77-040-10","7":"product_cat-astm","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/14393","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/14394"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=14393"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=14393"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=14393"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}