{"id":211975,"date":"2024-10-19T13:42:58","date_gmt":"2024-10-19T13:42:58","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/icc-ibc-seaoc-wdm-2018\/"},"modified":"2024-10-25T06:31:45","modified_gmt":"2024-10-25T06:31:45","slug":"icc-ibc-seaoc-wdm-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/icc\/icc-ibc-seaoc-wdm-2018\/","title":{"rendered":"ICC IBC SEAOC WDM 2018"},"content":{"rendered":"

The Wind Design Manual provides examples on wind force design that illustrate the practical requirements of provisions in ASCE\/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Practicing structural engineers, trained designers, building department engineers, other plan review agencies, professors and students, can all learn from these examples of code-compliant designs engineered to achieve good performance under wind loading. Developed by the Wind Design Manual Task Group of the Structural Engineers Association of California (SEAOC), the publication draws on the expertise of invited authors from various parts of the United States. The Wind Design Manual is intended for nationwide use, with example problems that apply to a variety of geographic areas. All are presented in a format similar to the SEAOC Structural\/Seismic Design Manuals. A wide range of topics is covered General topics (4 examples) Specific topics (2 examples) Buildings (3 examples) Solar Photovoltaic systems (7 examples)<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nWIND DESIGN MANUAL BASED ON THE 2018 IBC\u00ae AND ASCE\/SEI 7-16 <\/td>\n<\/tr>\n
2<\/td>\nWIND DESIGN MANUAL BASED ON THE 2018 IBC\u00ae AND ASCE\/SEI 7-16 EXAMPLES FOR WIND FORCES ON BUILDINGS AND SOLAR PHOTOVOLTAIC SYSTEMS TITLE PAGE <\/td>\n<\/tr>\n
3<\/td>\nCOPYRIGHT <\/td>\n<\/tr>\n
6<\/td>\nTABLE OF CONTENTS <\/td>\n<\/tr>\n
8<\/td>\nPREFACE TO THE WIND DESIGN MANUAL <\/td>\n<\/tr>\n
10<\/td>\nACKNOWLEDGEMENTS <\/td>\n<\/tr>\n
14<\/td>\nHOW TO USE THIS DOCUMENT <\/td>\n<\/tr>\n
16<\/td>\nREFERENCES <\/td>\n<\/tr>\n
18<\/td>\nDESIGN EXAMPLE 1 ENCLOSURE CLASSIFICATION
OVERVIEW
IMAGE: AIR MATTRESS <\/td>\n<\/tr>\n
19<\/td>\nOUTLINE
DEFINITIONS
TABLE 26.13-1 <\/td>\n<\/tr>\n
20<\/td>\n1. ENCLOSURE CLASSIFICATIONS
ASCE TABLE 26.13-1 MAIN WIND FORCE RESISTING SYSTEM AND COMPONENTS AND CLADDING (ALL HEIGHTS): INTERNAL PRESSURE COEFFICIENT, (GCpi), FOR ENCLOSED, PARTIALLY ENCLOSED, PARTIALLY OPEN, AND OPEN BUILDINGS (WALLS AND ROOF) <\/td>\n<\/tr>\n
21<\/td>\n1.1 DEFINITIONS OF OPENINGS
1.2 PROBLEM STATEMENT
2. DESIGN EXAMPLE PROBLEM 1A
IMAGE: AGRICULTURAL BUILDING <\/td>\n<\/tr>\n
22<\/td>\n2.1 DETERMINATION
STEP 1 IDENTIFY THE OPENINGS
STEP 2 CHECK OPEN BUILDING REQUIREMENTS
STEP 3 CHECK PARTIALLY ENCLOSED BUILDING REQUIREMENTS <\/td>\n<\/tr>\n
23<\/td>\nSTEP 4 CHECK ENCLOSED BUILDING REQUIREMENTS
STEP 5 CHECK PARTIALLY OPEN BUILDING REQUIREMENTS
2.2 SUMMARY <\/td>\n<\/tr>\n
24<\/td>\n3. DESIGN EXAMPLE PROBLEM 1B
IMAGE: AGRICULTURAL BUILDING
3.1 DETERMINATION OF ENCLOSURE
STEP 1 IDENTIFY THE OPENINGS
STEP 2 CHECK OPEN BUILDING REQUIREMENTS <\/td>\n<\/tr>\n
25<\/td>\nSTEP 3 CHECK PARTIALLY ENCLOSED BUILDING REQUIREMENTS
3.2 SUMMARY
4. ADDITIONAL INFORMATION <\/td>\n<\/tr>\n
28<\/td>\nDESIGN EXAMPLE 2 TOPOGRAPHIC EFFECTS
OVERVIEW
OUTLINE
PROBLEM 2A-ESCARPMENT-SAN FRANCISCO HELMET ROCK <\/td>\n<\/tr>\n
29<\/td>\nFIGURE 2-1 EXAMPLE SITE NEAR HELMENT ROCK, SAN FRANCISCO
FIGURE 2-2 GOOGLE EARTH TOPOGRAPHIC SECTION WITH NOTATIONS ADDED <\/td>\n<\/tr>\n
30<\/td>\nFIGURE 2-3 IDEALIZATION OF 2D ESCARPMENT ACCORDING TO FIGURE 26.8-1
DETERMINATION OF TOPOGRAPHIC EFFECT BY SECTION 26.8 <\/td>\n<\/tr>\n
31<\/td>\nFIGURE 2-4 PROVIDES Kzt FOR z BETWEEN 0 AND 200 FEET ELEVATION AT THIS SITE
PROBLEM 2B-EFFECT OF STRUCTURE LOCATION RELATIVE TO HILL FEATURE FOR Kzt <\/td>\n<\/tr>\n
32<\/td>\nFIGURE 2-5 VARIATION OF Kzt WITH STRUCTURE LOCATION
PROBLEM 2C- 3D AXISYMMETRIC HILL-AMITY, OREGON <\/td>\n<\/tr>\n
33<\/td>\nFIGURE 2-6 EXAMPLE SITE NEAR AMITY, OREGON
FIGURE 2-7 TOPOGRAPHIC SECTION PROVIDED BY GOOGLE EARTH WITH NOTATIONS ADDED <\/td>\n<\/tr>\n
34<\/td>\nFIGURE 2-8 IDEALIZATION OF 2D AXISYMMETRIC HILL ACCORDING TO FIGURE 26.8-1
DETERMINATION OF TOPOGRAPHIC EFFECT BY SECTION 26.8 <\/td>\n<\/tr>\n
35<\/td>\nFIGURE 2-9 EXAMPLE 2B Kzt FOR SITE LOCATED AT PEAK OF 3D AXISYSMMETRIC HILL <\/td>\n<\/tr>\n
36<\/td>\nPROBLEM 2D-DIRECTION-SPECIFIC TOPOGRAPHIC SPEED UP
FIGURE 2-10 DIRECTION-SPECIFIC EXPOSURE AND TOPOGRAPHIC EFFECTS <\/td>\n<\/tr>\n
37<\/td>\nFIGURE 2-11 HILL GEOMETRY AT 45-DEGREE AZIMUTH SECTIONS <\/td>\n<\/tr>\n
38<\/td>\nTABLE 2-1 HILL GEOMETRY PARAMETERS
TABLE 2-2 SUMMARY OF THE CRITICAL WIND EFFECT DIRECTIONS BY DESIGN PROCEDURE <\/td>\n<\/tr>\n
39<\/td>\nFIGURE 2-12 PROBLEM 2D AZIMUTH PLOT OF Kzt, Kz, and Kzt, Kz AT ELEVATION 33 FEET
SUMMARY
ADDITIONAL INFORMATION <\/td>\n<\/tr>\n
40<\/td>\nDESIGN EXAMPLE 3A EXPOSURE CATEGORY\/SURGACE ROUGHNESS CATEGORY
OVERVIEW
FIGURE 3A-1, ASCE 7 FIGURE C26.7-8 DETERMINATION OF WIND LOADS FROM DIFFERENT DIRECTIONS
OUTLINE <\/td>\n<\/tr>\n
41<\/td>\n1. EXPOSURE AND SURFACE ROUGHNESS CATEGORIES
1.1 WIND DIRECTION AND SECTORS
FIGURE 3A-2 SITE IN TRACY, CA <\/td>\n<\/tr>\n
42<\/td>\n1.2 SURFACE ROUGHNESS CATEGORY
FIGURE 3A-3 ASCE 7 TABLE C26.7-1 <\/td>\n<\/tr>\n
43<\/td>\nFIGURE 3A-4 ASCE 7 FIGURE C26.7-2 <\/td>\n<\/tr>\n
44<\/td>\nFIGURE C26.7-3 EXPOSURE B WITH UPWIND OPEN PATCHES SECTOR ANALYSIS <\/td>\n<\/tr>\n
45<\/td>\nFIGURE C26.7-4 MINIMUM AREA OF INDIVIDUAL OPEN PATCHES AFFECTING QUALIFICATION OF EXPOSURE B <\/td>\n<\/tr>\n
46<\/td>\n2. DESIGN EXAMPLE 3A-EXPOSURE CATEGORY\/SURFACE ROUGHNESS CATEGORY
SECTOR 1
CATEGORY C
CATEGORY B
SECTOR 2
CATEGORY C <\/td>\n<\/tr>\n
47<\/td>\nFIGURE 3A-7 SECTOR 1 AND 2 <\/td>\n<\/tr>\n
48<\/td>\nSECTOR 3
CATEGORY C
SECTOR 4
CATEORY B <\/td>\n<\/tr>\n
49<\/td>\nFIGURE 3A-8 SECTORS 3 AND 4
SECTOR 5
CATEORY B <\/td>\n<\/tr>\n
50<\/td>\nSECTOR 6
CATEGORY B <\/td>\n<\/tr>\n
51<\/td>\nFIGURE 3A-9 SECTORS 5 AND 6 <\/td>\n<\/tr>\n
52<\/td>\nFIGURE 3A-10 OPEN PATCH DISTANCE <\/td>\n<\/tr>\n
53<\/td>\nFIGURE 3A-11 OPEN PATCH DISTANCE <\/td>\n<\/tr>\n
54<\/td>\nSECTOR 7
CATEGORY B
SECTOR 8
CATEGORY B <\/td>\n<\/tr>\n
55<\/td>\nFIGURE 3A-12 SECTORS 7 AND 8 <\/td>\n<\/tr>\n
56<\/td>\n3. EXPOSURE REQUIREMENTS
TABLE 3A-1 EXPOSURE REQUIREMENTS <\/td>\n<\/tr>\n
58<\/td>\nDESIGN EXAMPLE 3B DETERMINATION OF AN INTERMEDIATE EXPOSURE AT A TRANSITION ZONE
OVERVIEW
OUTLINE
PROBLEM STATEMENT
DETERMINE THE FOLLOWING <\/td>\n<\/tr>\n
59<\/td>\n1. SITE TOPOGRAPHIC INFORMATION
FIGURE 3B-1 SECTOR 8 AERIAL IMAGERY
2. CALCULATION OF INTERMEDIATE VELOCITY PRESSURE COEFFICIENT
2.1 DETERMINE ROUGHNESS LENGTHS AND HEIGHTS <\/td>\n<\/tr>\n
60<\/td>\nFIGURE 3B-2 SECTOR 8 ROUGHNESS CHANGES
2.2 CALCULATE (\u03b1) AND zg AT STATION 1
EQUATION C26.10-3
EQUATION C26.10-4
2.3 CALCULATE THE VELOCITY PRESSURE COEFFICIENTS AT STATION 1
EQUATION C26.10-1 <\/td>\n<\/tr>\n
61<\/td>\n2.4 CALCULATE THE DISTANCE x0
EQUATION C26.10-8
2.5 CALCULATE THE FUNCTION F\u0394K(x)
EQUATION C26.10-7
2.6 CALCULATE THE CELOCITY PRESSURE COEFFICIENT INCREMENT \u0394K
EQUATION C26.10-6
2.7 CALCULATE THE ADJUSTED Kz VALUE AT STATION 2
EQUATION C26.10-5
2.8 CALCULATE (\u03b1) AND zg AT STATION 2 <\/td>\n<\/tr>\n
62<\/td>\n2.9 CALCULATE THE VELOCITY PRESSURE COEFFICIENTS AT STATION 2
2.10 CALCULATE THE DISTANCE x0
EQUATION C26.10-8
2.11 CALCULATE THE FUNCTION F\u0394K(x)
EQUATION C26.10-7 <\/td>\n<\/tr>\n
63<\/td>\n2.12 CALCULATE THE VELOCITY PRESSURE COEFFICIENT INCREMENT \u0394K
12.13 CALCULATE THE ADJUSTED Kz VALUE AT STATION 3
3. SUMMARY
4. ADDITIONAL INFORMATION AND COMMENTARY
5. ITEM NOT ADDRESSED IN THIS EXAMPLE <\/td>\n<\/tr>\n
64<\/td>\nDESIGN EXAMPLE 4 GUST FACTOR
OVERVIEW
OUTLINE
1. GUST EFFECT VARIABLES <\/td>\n<\/tr>\n
65<\/td>\n2. APPROXIMATE NATURAL FREQUENCY
FIGURE 4-1 BUILDING PROPERTIES
EQUATION 26.11-1 <\/td>\n<\/tr>\n
66<\/td>\nEQUATION 26.11-2
EQUATION 26.11-3
EQUATION 26.11-4
FIGURE 4-2 ASCE 7 FIGURE C26.11-1 APPROXIMATE NATURAL FREQUENCY <\/td>\n<\/tr>\n
67<\/td>\nEQUATION C26-11.9
EQUATION C26-11.10
FIGURE 4-3 COMPARISON OF SEISMIC VERSUS WIND <\/td>\n<\/tr>\n
68<\/td>\n3. FLEXIBLE BUILDING GUST FACTOR Gf
FIGURE 4-4 PLAN OF EXAMPLE BUILDING <\/td>\n<\/tr>\n
69<\/td>\nSTEP 1 AERODYNAMIC HEIGHT, z
TABLE 26.11-1
STEP 2 TURBULENCE INTENSITY, Iz
EQUATION 26.11-7
STEP 3 INTEGRAL LENGTH SCALE OF TURBULENCE, Lz
EQUATION 26.11-9 <\/td>\n<\/tr>\n
70<\/td>\nSTEP 4 MEAN HOURLY WIND SPEED, V z
EQUATION 26.11-16
STEP 5 GUST RESPONSE PEAK FACTOR, gR <\/td>\n<\/tr>\n
71<\/td>\nSTEP 6 BACKGROUND RESPONSE, Q
EQUATION 26.11-8
STEP 7 REDUCED FREQUENCY, N1
EQUATION 26.11-14
STEP 8 SIZE EFFECT FACTORS, R h , RB, AND RL <\/td>\n<\/tr>\n
72<\/td>\nTABLE 4-1 TURBULENCE COHERENCE FACTORS AND SIZE EFFECT FACTORS
STEP 9 RESONANT RESPONSE FACTOR, R
EQUATION 26.11-13
EQUATION 26.11-12 <\/td>\n<\/tr>\n
73<\/td>\nSTEP 10 FLEXIBLE STRUCTURE GUST FACTOR, G
EQUATION 26.11-10
4. RIGID BUILDING GUST FACTOR
STEP 1 AERODYNAMIC HEIGHT, z <\/td>\n<\/tr>\n
74<\/td>\nSTEP 2 TURBULENCE INTENSITY, Iz
EQUATION 26.11-7
STEP 3 INTEGRAL LENGTH SCALE OF TURBULENCE, Lz
EQUATION 26.11-9
STEP 4 BACKGROUND RESPONSE, Q
EQUATION 26.11-8 <\/td>\n<\/tr>\n
75<\/td>\nSTEP 5 RIGID RESPONSE GUST EFFECT FACTOR, G
EQUATION 26.11-6
5. CONCLUDING THOUGHTS <\/td>\n<\/tr>\n
76<\/td>\n6. ITEMS NOT ADDRESSED IN THIS EXAMPLE
REFERENCES <\/td>\n<\/tr>\n
78<\/td>\nDESIGN EXAMPLE 5 TORNADO STORM SHELTER
OVERVIEW <\/td>\n<\/tr>\n
79<\/td>\nOUTLINE
1. SHELTER GEOMETRY AND IBC LOAD CRITERIA
1.1 SHELTER GEOMETRY <\/td>\n<\/tr>\n
80<\/td>\nFIGURE 5-1 STORM SHELTER ROOF PLAN <\/td>\n<\/tr>\n
81<\/td>\nFIGURE 5-2 HOST BUILDING ROOF PLAN ABOVE STORM SHELTER
1.2 IBC LOAD CRITERIA
1.2.1 ROOF DEAD LOAD <\/td>\n<\/tr>\n
82<\/td>\nTABLE 5-1 ROOF DEAD LOADS
1.2.2 ROOF LIVE LOAD
2. ICC 500 STORM SHELTER LOAD CRITERIA
2.1 RAIN LOADS
2.2 SHELTER ROOF LIVE LOADS <\/td>\n<\/tr>\n
83<\/td>\n2.3 WIND LOADS
TABLE 5-2 DESIGN VALUES <\/td>\n<\/tr>\n
84<\/td>\nTABLE 5-3 MWFRS WIND LOADS <\/td>\n<\/tr>\n
85<\/td>\nTABLE 5-4A C&C WALL WIND LOADS <\/td>\n<\/tr>\n
86<\/td>\nTABLE 5-4B C&C ROOF WIND LOADS <\/td>\n<\/tr>\n
87<\/td>\n2.4 CONNECTIONS TO THE HOST BUILDING
2.5 DEBRIS HAZARDS
2.5.1 WIND-BORNE DEBRIS MISSILE IMPACT
TABLE 5-5 WIND-BORNE MISSILE SPEED <\/td>\n<\/tr>\n
88<\/td>\n2.5.2 FALLING DEBRIS\/COLLAPSE LIVE LOAD
TABLE 5-6 COLLAPSE LOAD <\/td>\n<\/tr>\n
89<\/td>\n3. ROOF DESIGN
3.1 COMPOSITE DECK DESIGN
TABLE 5-7 DESIGN LOADS FOR COMPOSITE DECK DESIGN
EQUATION 16-8
EQUATION 16-10
EQUATION 16-12
EQUATION 16-13
EQUATION 16-15
EQUATION 16-1
EQUATION 16-3
EQUATION 16-14
EQUATION 16-16 <\/td>\n<\/tr>\n
90<\/td>\n3.2 CONNECTION BETWEEN SLAB AND JOISTS <\/td>\n<\/tr>\n
91<\/td>\nACI 318 EQUATION 17.4.2.1A
FIGURE 5-3 BREAKOUT CONE FOR HEADED STUD CONNECTION TO STEEL JOIST <\/td>\n<\/tr>\n
92<\/td>\n3.3 JOIST DESIGN
TABLE 5-8 JOIST LOADS
EQUATION 16-8
EQUATION 16-10
EQUATION 16-12
EQUATION 16-13
EQUATION 16-15 <\/td>\n<\/tr>\n
93<\/td>\n4. WALL DESIGN
4.1 EXTERIOR WALL DESIGN
FIGURE 5-4 EXTERIOR WALL DESIGN CASES <\/td>\n<\/tr>\n
94<\/td>\n4.1.1 BEARING WALL CASE
TABLE 5-9 DOWNWARD DESIGN LOADS <\/td>\n<\/tr>\n
95<\/td>\nFIGURE 5-5 BEARING WALL CASE (A) LOADING (NORTH-SOUTH WALLS) <\/td>\n<\/tr>\n
96<\/td>\n4.1.2 SHEAR WALL CASE
FIGURE 5-6 WIND PRESSURES FOR WIND IN TWO ORTHOGONAL DIRECTIONS
FIGURE 5-7 WIND PRESSURES FOR WIND 45 DEGREES TO TWO ORTHOGONAL DIRECTIONS <\/td>\n<\/tr>\n
97<\/td>\nTABLE 5-10 MWFRS LOADS
FIGURE 5-8 WIND PRESSURES FOR WIND IN EAST-WEST DIRECTION <\/td>\n<\/tr>\n
99<\/td>\nFIGURE 5-9 SHEAR WALL CASE LOADING (NORTH-SOUTH WALLS)
4.1.3 EXTERIOR WALL DESIGN <\/td>\n<\/tr>\n
100<\/td>\n4.2 INTERIOR WALL DESIGN
5. FOUNDATION DESIGN
5.1 UPLIFT CHECK <\/td>\n<\/tr>\n
101<\/td>\n5.2 CONTINUOUS FOOTING DESIGN
6. CONNECTION DESIGN <\/td>\n<\/tr>\n
102<\/td>\nFIGURE 5-10 TOP OF WALL CONNECTION DETAILS <\/td>\n<\/tr>\n
103<\/td>\nFIGURE 5-11 BOTTOM OF WALL CONNECTION DETAILS <\/td>\n<\/tr>\n
104<\/td>\n7. ITEMS NOT ADDRESSED IN THIS EXAMPLE <\/td>\n<\/tr>\n
106<\/td>\nDESIGN EXAMPLE 6 HIGH WINDS EXAMPLE
OVERVIEW
FIGURE 6-1 BUILDING PLAN AND ELEVATION
OUTLINE <\/td>\n<\/tr>\n
107<\/td>\n1. DETERMINE WIND LOAD DESIGN PROCEDURE
2. CHAPTER 27-PART 1: ENCLOSED, PARTIALLY ENCLOSED, AND OPEN BUILDINGS OF ALL HEIGHTS <\/td>\n<\/tr>\n
108<\/td>\nFIGURE 6-2 ASCE 7 TABLE 27.2-1
STEP 1 DETERMINE RISK CATEGORY OF BUILDING <\/td>\n<\/tr>\n
109<\/td>\nSTEP 2 DETERMINE THE BASIC WIND SPEED, V, FOR THE APPLICABLE RISK CATEGORY
FIGURE 6-3 ASCE\/SEI HAZARD TOOL RESULTS <\/td>\n<\/tr>\n
110<\/td>\nSTEP 3 DETERMINE WIND LOAD PARAMETERS <\/td>\n<\/tr>\n
111<\/td>\nSTEP 4 DETERMINE VELOCITY PRESSURE EXPOSURE COEFFICIENT <\/td>\n<\/tr>\n
112<\/td>\nFIGURE 6-4 ASCE 7 TABLE 26.10-1 <\/td>\n<\/tr>\n
113<\/td>\nSTEP 5 DETEMINE VELOCITY PRESSURE qz
EQUATION 26.10-1 <\/td>\n<\/tr>\n
114<\/td>\nSTEP 6 DETERMINE EXTERNAL PRESSURE COEFFICIENT
FIGURE 6-5 ASCE 7 FIGURE 27.3-1 <\/td>\n<\/tr>\n
115<\/td>\nFIGURE 6-5 (CONTINUED) ASCE 7 FIGURE 27.3-1 <\/td>\n<\/tr>\n
116<\/td>\nSTEP 7 CALCULATE WIND PRESSURE, p, ON EACH BUILDING SURFACE
EQUATION 27.3-1 <\/td>\n<\/tr>\n
118<\/td>\nFIGURE 6-6 EAST – WEST DIRECTION MWFRS BUILDING PRESSURES <\/td>\n<\/tr>\n
120<\/td>\nFIGURE 6-7 NORTH-SOUTH DIRECTION MWFRS BUILDING PRESSURES
3. DETERMINE WIND LOAD DESIGN PROCEDURE-COMPONENTS AND CLADDING (C&C) <\/td>\n<\/tr>\n
121<\/td>\n4. CHAPTER 30- PART 1 LOW-RISE BUILDINGS
FIGURE 6-8 ASCE 7 TABLE 30.3-1 <\/td>\n<\/tr>\n
122<\/td>\nSTEP 6 DETERMINE EXTERNAL PRESSURE COEFFICIENT <\/td>\n<\/tr>\n
123<\/td>\nFIGURE 6-9 ASCE 7 FIGURE 30.3-1 <\/td>\n<\/tr>\n
124<\/td>\nFIGURE 6-10 ASCE 7 FIGURE 30.3-2A <\/td>\n<\/tr>\n
125<\/td>\nEQUATION 30.3-1 <\/td>\n<\/tr>\n
126<\/td>\nFIGURE 6-11 ASCE 7 FIGURE C30-1
FIGURE 6-12 BUILDING CONFIGURATION <\/td>\n<\/tr>\n
128<\/td>\nDESIGN EXAMPLE 7A WIND FORCES ON A SIMPLE DIAPHRAGM BUILDING-PART 2 METHOD
OVERVIEW <\/td>\n<\/tr>\n
129<\/td>\nOUTLINE
1. BUILDING AND SITE INFORMATION
1.1 BUILDING INFORMATION <\/td>\n<\/tr>\n
130<\/td>\nFIGURE 7A-1 TYPICAL FLOOR PLAN <\/td>\n<\/tr>\n
131<\/td>\nFIGURE 7A-2A BUILDING ELEVATION (HIP ROOF BUILDING)
FIGURE 7A-2B BUILDING ELEVATION (FLAT ROOF BUILDING)
1.2 SITE INFORMATION
2. DETERMINE APPLICABILITY OF SIMPLIFIED METHOD <\/td>\n<\/tr>\n
133<\/td>\n3. WIND LOAD PARAMETERS SPECIFIED IN CHAPTER 26 <\/td>\n<\/tr>\n
134<\/td>\n4. DETERMINE SIMPLIFIED DESIGN WIND PRESSURES
TABLE 7A-1 HIP ROOF ps30 PRESSURES <\/td>\n<\/tr>\n
135<\/td>\nTABLE 7A-2 FLAT ROOF ps30 PRESSURES <\/td>\n<\/tr>\n
136<\/td>\n5. DETERMINE ADJUSTMENT FACTOR FOR BUILDING HEIGHT AND EXPOSURE
TABLE 7A-3 HIP ROOF ADJUSTMENT FACTORS
6. DETERMINE ADJUSTED SIMPLIFIED DESIGN WIND PRESSURES
EQUATION 28.5-1
TABLE 7A-4 ADJUSTED HIP ROOF DESIGN PRESSURES, CASE A <\/td>\n<\/tr>\n
137<\/td>\nFIGURE 7A-6A WIND PRESSURE DISTRIBUTION (HIP ROOF BUILDING), CASE A <\/td>\n<\/tr>\n
138<\/td>\nTABLE 7A-5 HIP ROOF WIND BASE SHEAR, CASE A
TABLE 7A-6 ADJUSTED HIP ROOF DESIGN PRESSURES, CASE B <\/td>\n<\/tr>\n
139<\/td>\nFIGURE 7A-6B WIND PRESSURE DISTRIBUTION (HIP ROOF BUILDING) CASE B
TABLE 7A-7 HIP ROOF WIND BASE SHEAR, CASE B <\/td>\n<\/tr>\n
140<\/td>\nTABLE 7A-8 HIP ROOF MINIMUM WIND BASE SHEAR, CASE A
TABLE 7A-9 HIP ROOF MINIMUM WIND BASE SHEAR CASE B <\/td>\n<\/tr>\n
141<\/td>\nTABLE 7A-10 ADJUSTED FLAT ROOF DESIGN PRESSURES
FIGURE 7A-6C WIND PRESSURE DISTRIBUTION (FLAT ROOF BUILDING) CASE A <\/td>\n<\/tr>\n
142<\/td>\nTABLE 7A-11 FLAT ROOF WIND BASE SHEAR CASE A
FIGURE 7A-6D WIND PRESSURE DISTRIBUTION (FLAT-ROOF BUILDING) CASE B <\/td>\n<\/tr>\n
143<\/td>\nTABLE 7A-12 FLAT ROOF WIND BASE SHEAR CASE B
7. DISTRIBUTION OF HORIZONTAL WIND LOADS ALONG HEIGHT <\/td>\n<\/tr>\n
144<\/td>\nTABLE 7A-13 HIP ROOF DIAPHRAGM REACTIONS, CASE A
TABLE 7A-14 HIP ROOF DIAPHRAGM REACTIONS CASE B <\/td>\n<\/tr>\n
145<\/td>\nTABLE 7A-15 FLAT ROOF DIAPHRAGM REACTIONS CASE A
TABLE 7A-16 FLAT ROOF DIAPHRAGM REACTIONS CASE B <\/td>\n<\/tr>\n
146<\/td>\n8. VERTICAL DISTRIBUTION OF WIND UPLIFT FORCES
TABLE 7A-17 HIP ROOF GROSS UPLIFT FORCES CASE A
TABLE 7A-18 HIP ROOF GROSS UPLIFT FORCES CASE B <\/td>\n<\/tr>\n
147<\/td>\nTABLE 7A-19 FLAT ROOF GROSS UPLIFT FORCES CASE A
TABLE 7A-20 FLAT ROOF GROSS UPLIFT FORCES CASE B
9. ITEMS NOT ADDRESSED IN THIS EXAMPLE <\/td>\n<\/tr>\n
148<\/td>\nDESIGN EXAMPLE 7B WIND FORCES ON A SIMPLE DIAPHRAGM BUILDING-PART 1 METHOD
OVERVIEW
OUTLINE <\/td>\n<\/tr>\n
149<\/td>\n1. BUILDING AND SITE INFORMATION
1.1 BUILDING INFORMATION
FIGURE 7B-1 TYPICAL FLOOR PLAN <\/td>\n<\/tr>\n
150<\/td>\nFIGURE 7B-2 BUILDING ELEVATION (HIP-ROOF BUILDING)
1.2 SITE INFORMATION
2. WIND LOAD PARAMETERS SPECIFIED IN CHAPTER 26 <\/td>\n<\/tr>\n
151<\/td>\n3. DETERMINE VELOCITY PRESSURE EXPOSURE COEFFICIENT
4. DETERMINE VELOCITY PRESSURE <\/td>\n<\/tr>\n
152<\/td>\nEQUATION 26.10-1
TABLE 7B-1 VELOCITY PRESSURE
5. DETERMINE EXTERNAL PRESSURE COEFFICIENT <\/td>\n<\/tr>\n
153<\/td>\nTABLE 7B-2 HIP ROOF PRESSURE COEFFICIENTS, CASE A
FIGURE 7B-3A WIND PRESSURE DISTRIBUTION (HIP ROOF BUILDING) CASE A <\/td>\n<\/tr>\n
154<\/td>\nTABLE 7B-3 HIP ROOF PRESSURE COEFFICIENTS CASE B
FIGURE 7B-3B WIND PRESSURE DISTRIBUTION (HIP ROOF BUILDING) CASE B <\/td>\n<\/tr>\n
155<\/td>\nFIGURE 7B-3C WIND PRESSURE DISTRIBUTION (HIP ROOF BUILDING) CASE B <\/td>\n<\/tr>\n
156<\/td>\n6. CALCULATE WIND PRESSURE
EQUATION 28.3-1
TABLE 7B-4 HIP ROOF DESIGN WIND PRESSURES, p <\/td>\n<\/tr>\n
157<\/td>\nTABLE 7B-5 HIP ROOF WIND BASE SHEAR CASE A <\/td>\n<\/tr>\n
158<\/td>\nTABLE 7B-6 HIP ROOF BASE WIND SHEAR, CASE B
TABLE 7B-7 HIP ROOF MINIMUM WIND BASE SHEAR CASE A <\/td>\n<\/tr>\n
159<\/td>\nTABLE 7B-8 HIP ROOF MINIMUM WIND BASE SHEAR CASE B
7. DISTRIBUTION OF HORIZONTAL WIND LOADS ALONG HEIGHT <\/td>\n<\/tr>\n
160<\/td>\nTABLE 7B-9 HIP ROOF DIAPHRAGM REACTIONS CASE A <\/td>\n<\/tr>\n
161<\/td>\nTABLE 7B-10 HIP ROOF DIAPHRAGM REACTIONS CASE B
8. VERTICAL DISTRIBUTION OF WIND UPLIFT FORCES <\/td>\n<\/tr>\n
162<\/td>\nTABLE 7B-11 HIP ROOF GROSS UPLIFT FORCES, CASE A
TABLE 7B-12 HIP ROOF GROSS UPLIFT FORCES, CASE B <\/td>\n<\/tr>\n
163<\/td>\n9. DISCUSSION ON COMPARISON OF PART 1 AND PART 2 METHODS
TABLE 7B-13 HIP ROOF WIND LOAD COMPARISON
10. ITEMS NOT ADDRESSED IN THIS EXAMPLE <\/td>\n<\/tr>\n
164<\/td>\nDESIGN EXAMPLE 8A WIND FORCES ON A THREE STORY L-SHAPED BUILDING
OVERVIEW <\/td>\n<\/tr>\n
165<\/td>\nOUTLINE
1. BUILDING LOCATION, USE, AND GEOMETRY
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
166<\/td>\nFIGURE 8A-1 TYPICAL FLOOR FRAMING PLAN <\/td>\n<\/tr>\n
167<\/td>\nFIGURE 8A-2 ROOF FRAMING PLAN <\/td>\n<\/tr>\n
168<\/td>\nFIGURE 8A-3 TYPICAL BUILDING SECTION AT EXTERIOR WALL <\/td>\n<\/tr>\n
169<\/td>\n2. CALCULATION OF VELOCITY PRESSURES
2.1 DETERMINATION OF RISK CATEGORY
2.2 DETERMINATION OF BASIC WIND SPEED
2.3 DETERMINATION OF WIND DIRECTIONALITY FACTOR <\/td>\n<\/tr>\n
170<\/td>\n2.4 DETERMINATION OF EXPOSURE CATEGORY
2.5 DETERMINATION OF GROUND ELEVATION FACTOR
2.6 DETERMINATION OF GROUND ELEVATION FACTOR <\/td>\n<\/tr>\n
171<\/td>\n2.7 DETERMINATION OF GUST EFFECT FACTOR
2.8 DETERMINATION OF ENCLOSURE CLASSIFICATION AND INTERNAL PRESSURE COEFFICIENT <\/td>\n<\/tr>\n
172<\/td>\n2.9 DETERMINATION OF MEAN ROOF HEIGHT AND VELOCITY PRESSURE EXPOSURE COEFFICIENT
2.10 DETERMINATION OF VELOCITY PRESSURE <\/td>\n<\/tr>\n
173<\/td>\n3. DETERMINATION OF EXTERNAL PRESSURE COEFFICIENTS
3.1 DETERMINATION OF WALL PRESSURE COEFFICIENTS
TABLE 8A-1 WALL PRESSURE COEFFICIENTS <\/td>\n<\/tr>\n
174<\/td>\n3.2 DETERMINATION OF ROOF PRESSURE COEFFICIENTS
TABLE 8A-2 ROOF PRESSURE COEFFICIENTS
3.3 DETERMINATION OF PARAPET PRESSURE COEFFICIENTS
TABLE 8A-3 PARAPET PRESSURE COEFFICIENTS <\/td>\n<\/tr>\n
175<\/td>\n4. APPLICATION OF WIND PRESSURES
4.1 DETERMINATION OF DESIGN WIND PRESSURES
TABLE 8A-4 SUMMARY OF WIND PRESSURES <\/td>\n<\/tr>\n
176<\/td>\nTABLE 8A-4 SUMMARY OF WIND PRESSURES (continued) <\/td>\n<\/tr>\n
177<\/td>\n5. VERTICAL DISTRIBUTION OF WIND LOADS TO DIAPHRAGMS
5.1 VERTICAL DISTRIBUTION OF WIND LOADS TO DIAPHRAGMS
TABLE 8A-5 WIND FORCES AT EACH DIAPHRAGM LEVEL <\/td>\n<\/tr>\n
178<\/td>\n6. HORIZONTAL DISTRIBUTION OF WIND LOADS TO BRACED FRAMES
6.1 FLEXIBLE VS RIGID DIAPHRAGMS
6.2 DETERMINATION OF CENTER OF MASS AND CENTER OF RIGIDITY
6.3 HORIZONTAL DISTRIBUTION OF WIND LOADS TO BRACED FRAMES <\/td>\n<\/tr>\n
179<\/td>\n7. DESIGN WIND LOAD CASES
7.1 DESIGN WIND LOAD CASE 1 <\/td>\n<\/tr>\n
180<\/td>\n7.2 DESIGN WIND LOAD CASE 2
TABLE 8A-6 LOAD CASE 2 <\/td>\n<\/tr>\n
181<\/td>\n7.3 DESIGN WIND LOAD CASES 3 AND 4
8. ITEMS NOT ADDRESSED IN THIS EXAMPLE <\/td>\n<\/tr>\n
182<\/td>\nDESIGN EXAMPLE 8B COMPONENTS AND CLADDING WIND FORCES ON A THREE-STORY, L-SHAPED BUILDING
OVERVIEW
OUTLINE <\/td>\n<\/tr>\n
183<\/td>\n1. BUILDING LOCATION, USE, AND GEOMETRY
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
184<\/td>\nFIGURE 8B-1 TYPICAL FLOOR FRAMING PLAN <\/td>\n<\/tr>\n
185<\/td>\nFIGURE 8B-2 ROOF FRAMING PLAN <\/td>\n<\/tr>\n
186<\/td>\nFIGURE 8B-3 TYPICAL BUILDING SECTION AN EXTERIOR WALL <\/td>\n<\/tr>\n
187<\/td>\n2. CALCULATION OF VELOCITY PRESSURES
2.1 DETERMINATION OF RISK CATEGORY
2.2 DETERMINATION OF BASIC WIND SPEED
2.3 DETERMINATION OF WIND DIRECTIONALITY FACTOR <\/td>\n<\/tr>\n
188<\/td>\n2.4 DETERMINATION OF EXPOSURE CATEGORY
2.5 DETERMINATION OF TOPOGRAPHIC FACTOR
2.6 DETERMINATION OF GROUND ELEVATION FACTOR <\/td>\n<\/tr>\n
189<\/td>\n2.7 DETERMINATION OF GUST EFFECT FACTOR
2.8 DETERMINATION OF MEAN ROOF HEIGHT AND VELOCITY PRESSURE EXPOSURE COEFFICIENT <\/td>\n<\/tr>\n
190<\/td>\n2.9 DETERMINATION OF VELOCITY PRESSURE
3. DETERMINATION OF EXTERNAL PRESSURE COEFFICIENTS
3.1 DETERMINATION OF EFFECTIVE WIND AREAS
TABLE 8B-1 EFFECTIVE WIND AREAS OF BUILDING ELEMENTS <\/td>\n<\/tr>\n
191<\/td>\n3.2 DETERMINATION OF END ZONE WIDTHS
3.3 DETERMINATION OF WALL PRESSURE COEFFICIENTS
TABLE 8B-2 WALL PRESSURE COEFFICIENTS <\/td>\n<\/tr>\n
192<\/td>\n3.4 DETERMINATION OF ROOF PRESSURE COEFFICIENTS
TABLE 8B-3 ROOF PRESSURE COEFFICIENTS
3.5 DETERMINATION OF PARAPET PRESSURE COEFFICIENTS
TABLE 8B-4 PARAPET PRESSURE COEFFICIENTS <\/td>\n<\/tr>\n
193<\/td>\n4. APPLICATION OF WIND PRESSURES
EQUATION 30.3-1
4.1 DETERMINATION OF DESIGN WIND PRESSURE FOR A TYPICAL EXTERIOR STUD
TABLE 8B-5 C&C WIND PRESSURES FOR A TYPICAL EXTERIOR STUD
4.2 DETERMINATION OF DESIGN WIND PRESSURE FOR A THIRD-FLOOR STUD WITH A PARAPET
TABLE 8B-6 C&C WIND PRESSURES FOR A THIRD-FLOOR STUD WITH PARAPET <\/td>\n<\/tr>\n
194<\/td>\n4.3 DETERMINATION OF DESIGN WIND PRESSURE FOR A TYPICAL ROOF FRAMING MEMBER
TABLE 8B-7 C&C WIND PRESSURES FOR A TYPICAL ROOF FRAMING MEMBER
4.4 DETERMINATION OF DESIGN WIND PRESSURE FOR WALL CLADDING
TABLE 8B-8 C&C WIND PRESSURES FOR WALL CLADDING
4.5 DETERMINATION OF DESIGN WIND PRESSURE FOR ROOF CLADDING
TABLE 8B-9 C&C WIND PRESSURES FOR ROOF CLADDING <\/td>\n<\/tr>\n
195<\/td>\n4.6 DETERMINATION OF DESIGN WIND PRESSURE FOR A WINDOW UNIT
TABLE 8B-10 C&C WIND PRESSURES FOR A WINDOW UNIT
4.7 USE OF C&C WIND PRESSURES FOR STRUCTURAL DESIGN
5. ITEMS NOT ADDRESSED IN THIS EXAMPLE <\/td>\n<\/tr>\n
196<\/td>\nDESIGN EXAMPLE 9 DESIGN WIND FORCES FOR A 14-STORY OFFICE BUILDING
OVERVIEW
OUTLINE
1. PROBLEM STATEMENT
1.1 USE THE WIND LOADS PROVISIONS TO DETERMINE <\/td>\n<\/tr>\n
197<\/td>\nFIGURE 9-1 EXAMPLE BUILDING PLAN, ELEVATION, AND DIMENSIONS
2. SOLUTION
2.1 MWFRS <\/td>\n<\/tr>\n
198<\/td>\nFIGURE 9-2 STEPS TO DETERMINE MWFRS WIND LOADS FOR ENCLOSED, PARTIALLY ENCLOSED, AND OPEN BUILDINGS OF ALL HEIGHTS, TABLE 27.2-1 <\/td>\n<\/tr>\n
199<\/td>\nEQUATION 26.10-1 <\/td>\n<\/tr>\n
200<\/td>\nFIGURE 9-3 VELOCITY PRESSURE EXPOSURE COEFFICIENTS, Kh, AND Kz, TABLE 26.10-1
2.2 EVALUATION OF GUST EFFECT FACTOR, G OR Gf <\/td>\n<\/tr>\n
201<\/td>\nEQUATION 26.11-2
TABLE 9-1 BUILDING AND ENVIRONMENTAL ATTRIBUTES
TABLE 9-2 TERRAIN EXPOSURE CONSTANTS FOR FLEXIBLE BUILDING CALCULATIONS-EXPOSURE B ( TABLE 26.11-1 ) <\/td>\n<\/tr>\n
202<\/td>\nTABLE 9-3 CALCULATED PARAMETERS FOR FLEXIBLE BUILDING CALCULATIONS
2.3 EVALUATION OF DESIGN WIND PRESSURE
EQUATION 27.3-1 <\/td>\n<\/tr>\n
203<\/td>\nTABLE 9-4 WALL PRESSURE COEFFICIENTS, Cp (FIGURE 27.3-1) <\/td>\n<\/tr>\n
204<\/td>\nTABLE 9-5 CALCULATION OF STORY NET PRESSURES <\/td>\n<\/tr>\n
205<\/td>\nFIGURE 9-4 STORY NET PRESSURES
2.4 COMPONENT AND CLADDING PRESSURES
EQUATION 30.5-1 <\/td>\n<\/tr>\n
206<\/td>\nFIGURE 9-5 WIND PRESSURE ZONES (ASCE FIGURE 30.5-1)
TABLE 9-6 CALCULATION OF DESIGN WIND PRESSURE FOR COMPONENTS AND CLADDING <\/td>\n<\/tr>\n
207<\/td>\n3. DISCUSSION
3.1 FLEXIBLE STRUCTURE
3.2 IMPACT OF PODIUM
3.3 WIND TUNNEL TEST
3.4 EFFECTIVE AREA FOR DESIGN OF COMPONENTS AND CLADDING <\/td>\n<\/tr>\n
208<\/td>\nDESIGN EXAMPLE 10 ROOFTOP SOLAR PANELS FOR BUILDINGS OF ALL HEIGHTS WITH FLAT ROOFS OR GABLE OR HIP ROOFS WITH SLOPES LESS THAN 7 DEGREES-SMALL COMMERCIAL BUILDING
OVERVIEW <\/td>\n<\/tr>\n
209<\/td>\nOUTLINE <\/td>\n<\/tr>\n
210<\/td>\n1. BUILDING GEOMETRY AND LOADS
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
211<\/td>\nFIGURE 10-1 ELEVATION VIEW
FIGURE 10-2 PLAN VIEW <\/td>\n<\/tr>\n
212<\/td>\n2. WIND DESIGN
FIGURE 10-3 ARAY TOP VIEW <\/td>\n<\/tr>\n
213<\/td>\n2.1 CODE DESIGN APPLICABILITY
TABLE 10-1 CODE DESIGN APPLICABILITY <\/td>\n<\/tr>\n
214<\/td>\n2.2 VELOCITY PRESSURE
TABLE 26.9-1 <\/td>\n<\/tr>\n
215<\/td>\nEQUATION 26.10-1
2.3 DETERMINING EFFECTIVE AND NORMALIZED WIND AREAS <\/td>\n<\/tr>\n
217<\/td>\n2.4 PARAPET HEIGHT FACTOR
2.5 PANEL CHORD FACTOR
2.6 EXPOSURE FACTOR <\/td>\n<\/tr>\n
219<\/td>\nFIGURE 10-4 ARRAY TOP VIEW WITH DEFINED AREAS
FIGURE 10-5 ARRAY TOP VIEW WITH DEFINED AREAS <\/td>\n<\/tr>\n
221<\/td>\n2.7 NOMINAL NET PRESSURE COEFFICIENT
TABLE 10-2 (GCrn)nom EQUATIONS <\/td>\n<\/tr>\n
222<\/td>\nTABLE 10-3 (GCrn)nom CALCULATION
2.8 NET PRESSURE COEFFICIENT
EQUATION 29.4-6 <\/td>\n<\/tr>\n
223<\/td>\nTABLE 10-4 NET EXPOSURE COEFFICIENT (GCrn) CALCULATION
2.9 DESIGN WIND PRESSURE
EQUATION 29.4-5
2.9.1 SOLAR PANEL DESIGN <\/td>\n<\/tr>\n
224<\/td>\nTABLE 10-5 SOLAR PANEL DESIGN WIND LOAD CALCULATION
2.9.2 SOLAR PANEL TO TRAY CONNECTION DESIGN
TABLE 10-6 SOLAR PANEL TO TRAY CONNECTION DESIGN WIND LOAD CALCULATION <\/td>\n<\/tr>\n
225<\/td>\n2.9.3 TRAY TO ROOF DESIGN
FIGURE 10-6 ARRAY TOP VIEW WITH DEFINED SHARING AREAS <\/td>\n<\/tr>\n
226<\/td>\nTABLE 10-7 BALLAST DESIGN WIND LOAD CALCULATION <\/td>\n<\/tr>\n
227<\/td>\nTABLE 10-8 SOLAR PANEL DESIGN POINT LOAD CALCULATION <\/td>\n<\/tr>\n
228<\/td>\n2.10 ROOF DESIGN
2.10.1 BALLASTED ARRAYS
2.10.2 ATTACHED ARRAYS <\/td>\n<\/tr>\n
229<\/td>\n3. ITEMS NOT ADDRESSED IN THIS DESIGN EXAMPLE
4. REFERENCES <\/td>\n<\/tr>\n
230<\/td>\nDESIGN EXAMPLE 11 ROOFTOP SOLAR PANELS OF ALL HEIGHTS WITH FLAT OR GABLE OR HIP ROOFS WITH SLOPES LESS THAN 7 DEGREES-LARGE COMMERCIAL BUILDING
OVERVIEW
OUTLINE
1. BUILDING GEOMETRY AND LOADS
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
231<\/td>\nFIGURE 11-1 ELEVATION VIEW <\/td>\n<\/tr>\n
232<\/td>\nFIGURE 11-2 PLAN VIEW
2. WIND DESIGN <\/td>\n<\/tr>\n
233<\/td>\nFIGURE 11-3 ARRAY TOP VIEW <\/td>\n<\/tr>\n
234<\/td>\n2.1 CODE DESIGN APPLICABILITY
TABLE 11-1 CODE DESIGN APPLICABILITY <\/td>\n<\/tr>\n
235<\/td>\n2.2 VELOCITY PRESSURE
TABLE 26.9-1 <\/td>\n<\/tr>\n
236<\/td>\nEQUATION 26.10-1
2.3 DETERMINING EFFECTIVE AND NORMALIZED WIND AREAS <\/td>\n<\/tr>\n
237<\/td>\n2.4 PARAPET HEIGHT FACTOR <\/td>\n<\/tr>\n
238<\/td>\n2.5 PANEL CHORD FACTOR
2.6 EXPOSURE FACTOR <\/td>\n<\/tr>\n
239<\/td>\nFIGURE 11-4 ARRAY TOP VIEW WITH DEFINED AREAS <\/td>\n<\/tr>\n
240<\/td>\nFIGURE 11-5A ARRAY 1S TOP VIEW WITH DEFINED AREAS <\/td>\n<\/tr>\n
242<\/td>\nFIGURE 11-5B ARRAY 1C TOP VIEW WITH DEFINED AREAS <\/td>\n<\/tr>\n
243<\/td>\nFIGURE 11-5C ARRAY TOP VIEW WITH DEFINED AREAS <\/td>\n<\/tr>\n
244<\/td>\n2.7 NOMINAL NET PRESSURE COEFFICIENT <\/td>\n<\/tr>\n
245<\/td>\nTABLE 11-2 (GCrn)nom EQUATIONS
TABLE 11-3 (GCrn)nom CALCULATION
2.8 NET PRESSURE COEFFICIENT
EQUATION 29.4-6 <\/td>\n<\/tr>\n
246<\/td>\nTABLE 11-4 NET EXPOSURE COEFFICIENT (GCrn) CALCULATION
2.9 DESIGN WIND PRESSURE
EQUATION 29.4-5
2.9.1 SOLAR PANEL DESIGN
TABLE 11-5 SOLAR PANEL DESIGN WIND LOAD CALCULATION <\/td>\n<\/tr>\n
247<\/td>\n3. ITEMS NOT ADDRESSED IN THIS DESIGN EXAMPLE
4. REFERENCES <\/td>\n<\/tr>\n
248<\/td>\nDESIGN EXAMPLE 12 ROOFTOP SOLAR PANELS PARALLEL TO THE ROOF SURFACE ON BUILDINGS OF ALL HEIGHTS AND ROOF SLOPES – SINGLE FAMILY RESIDENCE
OVERVIEW <\/td>\n<\/tr>\n
249<\/td>\nOUTLINE
1. BUILDING GEOMETRY AND LOADS
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
250<\/td>\nFIGURE 12-1 ELEVATION VIEW
FIGURE 12-2 PLAN VIEW <\/td>\n<\/tr>\n
251<\/td>\n2. WIND DESIGN
FIGURE 12-3 ARRAY TOP VIEW <\/td>\n<\/tr>\n
252<\/td>\n2.1 CODE DESIGN APPLICABILITY
TABLE 12-1 CODE DESIGN APPLICABILITY <\/td>\n<\/tr>\n
253<\/td>\n2.2 VELOCITY PRESSURE
TABLE 26.9-1 <\/td>\n<\/tr>\n
254<\/td>\nEQUATION 26.10-1
2.3 DETERMINING EFFECTIVE WIND AREAS <\/td>\n<\/tr>\n
255<\/td>\nFIGURE 12-4 ARRAY FRAMING VIEW <\/td>\n<\/tr>\n
256<\/td>\nTABLE 12-2 EFFECTIVE AREA (A) FOR RAIL TO ROOF CONNECTION
2.4 EXTERNAL PRESSURE COEFFICIENT <\/td>\n<\/tr>\n
257<\/td>\nFIGURE 30.3-2C <\/td>\n<\/tr>\n
258<\/td>\nTABLE 12-3 GCp CALCULATION
2.5 EXPOSURE FACTOR <\/td>\n<\/tr>\n
259<\/td>\nFIGURE 12-5 ARRAY TOP VIEW WITH DEFINED AREAS <\/td>\n<\/tr>\n
260<\/td>\nFIGURE 12-6 ARRAY FRAMING VIEW WITH DEFINED GCp FACTORS ON PANELS <\/td>\n<\/tr>\n
261<\/td>\n2.6 SOLAR ARRAY PRESSURE EQUALIZATION FACTOR <\/td>\n<\/tr>\n
262<\/td>\nTABLE 12-4 PRESSURE EQUALIZATION FACTOR <\/td>\n<\/tr>\n
263<\/td>\n2.7 DESIGN WIND PRESSURE
EQUATION 29.4-7
FIGURE 12-7 SOLAR ARRAY DEPICTION SHOWING PANEL TO RAIL CONNECTION
2.7.1 SOLAR PANEL DESIGN <\/td>\n<\/tr>\n
264<\/td>\nTABLE 12-5 SOLAR PANEL DESIGN WIND LOAD CALCULATION
2.7.2 SOLAR PANEL TO RAIL CONNECTION DESIGN <\/td>\n<\/tr>\n
265<\/td>\nTABLE 12-6 SOLAR PANEL TO RAIL CONNECTION DESIGN WIND LOAD CALCULATION
2.7.3 RAIL DESIGN <\/td>\n<\/tr>\n
266<\/td>\nTABLE 12-7 RAIL DESIGN WIND LOAD CALCULATION <\/td>\n<\/tr>\n
267<\/td>\n2.7.4 RAIL TO ROOF CONNECTION DESIGN
FIGURE 12-8 ARRAY FRAMING VIEW <\/td>\n<\/tr>\n
268<\/td>\nFIGURE 12-9 SOLAR ARRAY DEPICTION SHOWING RAIL TO ROOF CONNECTIONS
TABLE 12-8 RAIL TO ROOF CONNECTION DESIGN WIND LOAD CALCULATION <\/td>\n<\/tr>\n
269<\/td>\n2.8 ROOF DESIGN
3. ITEMS NOT ADDRESSED IN THIS DESIGN EXAMPLE <\/td>\n<\/tr>\n
270<\/td>\n4. REFERENCES <\/td>\n<\/tr>\n
272<\/td>\nDESIGN EXAMPLE 13 ROOFTOP SOLAR PANELS PARALLEL TO ROOF SURFACE ON BUILDINGS OF ALL HEIGHTS AND ROOF SLOPES SPORTS COMPLEX
OVERVIEW
OUTLINE
1. BUILDING GEOMETRY AND LOADS
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
273<\/td>\nFIGURE 13-1 ELEVATION VIEW <\/td>\n<\/tr>\n
274<\/td>\nFIGURE 13-2 PLAN VIEW
2. WIND DESIGN <\/td>\n<\/tr>\n
275<\/td>\nFIGURE 13-3 ARRAY TOP VIEW <\/td>\n<\/tr>\n
276<\/td>\n2.1 CODE DESIGN APPLICABILITY
TABLE 13-1 CODE DESIGN APPLICABILITY <\/td>\n<\/tr>\n
277<\/td>\n2.2 VELOCITY PRESSURE
TABLE 26.9-1 <\/td>\n<\/tr>\n
278<\/td>\nEQUATION 26.10-1
2.3 DETERMINING EFFECTIVE WIND AREAS
2.4 EXTERNAL PRESSURE COEFFICIENT <\/td>\n<\/tr>\n
279<\/td>\nFIGURE 30.3-2C
TABLE 13-2 GCp CALCULATION <\/td>\n<\/tr>\n
280<\/td>\n2.5 EXPOSURE FACTOR <\/td>\n<\/tr>\n
281<\/td>\nFIGURE 13-4 ARRAY TOP VIEW <\/td>\n<\/tr>\n
282<\/td>\nFIGURE 13-5A ARRAY 1W TOP VIEW <\/td>\n<\/tr>\n
283<\/td>\nFIGURE 13-5B ARRAY 1E TOP VIEW <\/td>\n<\/tr>\n
285<\/td>\nFIGURE 13-5C ARRAY 2W TOP VIEW <\/td>\n<\/tr>\n
286<\/td>\nFIGURE 13-5D ARRAY 2E TOP VIEW <\/td>\n<\/tr>\n
287<\/td>\nFIGURE 13-5E ARRAY 3C TOP VIEW <\/td>\n<\/tr>\n
289<\/td>\n2.6 SOLAR ARRAY PRESSURE EQUALIZATION FACTOR
TABLE 13-3 PRESSURE EQUALIZATION FACTOR
2.7 DESIGN WIND PRESSURE
EQUATION 29.4-7
2.7.1 SOLAR PANEL DESIGN <\/td>\n<\/tr>\n
290<\/td>\nTABLE 13-4 SOLAR PANEL DESIGN WIND LOAD CALCULATION
2.8 DISCUSSION <\/td>\n<\/tr>\n
291<\/td>\n3. ITEMS NOT ADDRESSED IN THIS DESIGN EXAMPLE
4. REFERENCES <\/td>\n<\/tr>\n
292<\/td>\nDESIGN EXAMPLE 14 SEISMIC DESIGN OF A LOW-PROFILE UNATTACHED SOLAR PV SYSTEM ON A LOW SLOPE ROOF
OVERVIEW
OUTLINE
1. SOLAR ARRAY GEOMETRY AND LOADS
1.1 GIVEN INFORMATION <\/td>\n<\/tr>\n
293<\/td>\nFIGURE 14-1 ARRAY <\/td>\n<\/tr>\n
294<\/td>\n2. SEISMIC DESIGN
2.1 EVALUATE SEISMIC REQUIREMENTS FOR PERMITTING UNATTACHED SOLAR ARRAYS ON THE ROOF
2.2 EVALUATE WHETHER THE ARRAY IS ADEQUATELY LOW-PROFILE
2.3 DETERMINE THE DESIGN SEISMIC DISPLACEMENT \u03b4mpv OF THE ARRAY
EQUATION 13.6-1 <\/td>\n<\/tr>\n
295<\/td>\n2.4 DETERMINE THE MINIMUM SEPARATION BETWEEN ADJACENT ARRAYS
2.5 DETERMINE THE MINIMUM SEPARATION BETWEEN THE ARRAY AND A FIXED OBJECT ON THE ROOF
2.6 DETERMINE THE AMOUNT OF DIFFERENTIAL MOVEMENT THAT MUST BE ACCOMMODATED BY ALL ELECTRICAL CABLES THAT LEAD FROM ONE ARRAY TO ANOTHER ARRAY, OR FROM AN ARRAY TO A FIXED POINT ON THE ROOF
2.7 DETERMINE THE MINIMUM SEPARATION BETWEEN THE ARRAY AND THER ROOF EDGE <\/td>\n<\/tr>\n
296<\/td>\n2.8 DETERMINE THE REQUIRED SEISMIC INTERCONNECTION STRENGTH WITHIN THE ARRAY <\/td>\n<\/tr>\n
297<\/td>\n2.9 DETERMINE THE REQUIRED STRENGTH OF MEMBERS WITHIN THE ARRAY TO TRANSMIT SEISMIC FORCES TO EACH SUPPORT
EQUATION 13.3-1 <\/td>\n<\/tr>\n
298<\/td>\n3. DISCUSSION
4. REFERENCES <\/td>\n<\/tr>\n
300<\/td>\nDESIGN EXAMPLE 15 CONSIDERATION OF GRAVITY LOADS ON EXISTING ROOFS SUPPORTING SOLAR PV ARRAYS
OVERVIEW
OUTLINE <\/td>\n<\/tr>\n
301<\/td>\nFIGURE 15-1 HISTOGRAM OF TYPICAL SOLAR PV AND SOLAR THERMAL PANEL WEIGHTS
1. DESIGN CONSIDERATIONS
1.1 ROOF LIVE LOADS <\/td>\n<\/tr>\n
302<\/td>\nFIGURE 15-2 ROOF LIVE LOAD CAN BE OMITTED WHERE THE CLEAR DISTANCE FROM TOP OF ROOF TO UNDERSIDE OF PANELS IS NO MORE THAN 24 INCHES
1.2 ROOF LIVE LOAD OFFSET <\/td>\n<\/tr>\n
303<\/td>\n1.3 CONCENTRATED LOADS
FIGURE 15-3 IN WOOD FRAMED ROOFS, ROOF SHEATHING INTERCONNECTS RAFTERS SO THAT A CONCENTRATED LOAD ON ONE RAFTER TENDS TO BE SHARED WITH ADJACENT RAFTERS
1.4 CONCRETE SLAB AND STEEL FRAMED ROOFS <\/td>\n<\/tr>\n
304<\/td>\n1.5 WOOD FRAMED ROOFS
1.5.1 TIMBER TRUSSES
1.6 CHANGES SINCE ORIGINAL DESIGN AND CONSTRUCTION <\/td>\n<\/tr>\n
305<\/td>\n1.7 NOMENCLATURE
2. EXAMPLE: EXISTING WOOD FRAMED ROOFS
2.1 GIVEN INFORMATION
2.1.1 LOCATION <\/td>\n<\/tr>\n
306<\/td>\n2.1.2 SOLAR PV LOAD CASES <\/td>\n<\/tr>\n
307<\/td>\nFIGURE 15-4 THREE KINDS OF PV ARRAYS AND ASSOCIATED LOAD CASES <\/td>\n<\/tr>\n
308<\/td>\nFIGURE 15-5 COMMERCIAL BUILDING A ROOF FRAMING, SUPPORTING PV-1 TYPE OF ARRAY AND LOADING <\/td>\n<\/tr>\n
309<\/td>\n2.1.3 WIND VELOCITY PRESSURE
2.1.4 WIND DOWN LOAD ON ORIGINAL BUILDING, AND UNCOVERED AREAS BETWEEN PV PANELS
2.2 WIND DOWN LOAD ON JOISTS FOR THE PV-1 LOAD CASE <\/td>\n<\/tr>\n
310<\/td>\n2.3 WIND DOWN LOAD ON JOISTS FOR THE PV-2 LOAD CASE <\/td>\n<\/tr>\n
313<\/td>\nFIGURE 15-6 FLAT ROOF WIND ZONES FOR AREAS (A) COVERED BY SOLAR PANEL AND (B) NOT COVERED BY SOLAR PANELS <\/td>\n<\/tr>\n
314<\/td>\n2.4 WIND DOWN LOAD ON JOISTS FOR THE PV-3 LOAD CASE
2.5 WIND UPLIFT ON ROOF JOISTS <\/td>\n<\/tr>\n
315<\/td>\n2.5.1 WIND UPLIFT ON MOUNTS <\/td>\n<\/tr>\n
317<\/td>\n2.6 SNOW LOADS
3. GENERALIZATION OF LOADING <\/td>\n<\/tr>\n
318<\/td>\nFIGURE 15-7 MOMENTS ON JOISTS RESULTING FROM CONCENTRATED LOAD FROM PV PANEL MOUNTS
3.1 COMPARISON OF GENERALIZED LOADS <\/td>\n<\/tr>\n
319<\/td>\nTABLE 15-1 LOAD COMBINATIONS <\/td>\n<\/tr>\n
320<\/td>\n3.2 CONCENTRATED LOAD SHARING FACTOR <\/td>\n<\/tr>\n
321<\/td>\nFIGURE 15-8 CONCENTRATED LOAD SHARING FACTOR AS A FUNCTION OF THE SHEATHING\/RAFTER RELATIVE STIFFNESS RATIO
TABLE 15-2 SHEATHING\/RAFTER RELATIVE STIFFNESS RATIOS FOR CALCULATING <\/td>\n<\/tr>\n
322<\/td>\nTABLE 15-3 SMEARED UNIFORM LOAD <\/td>\n<\/tr>\n
323<\/td>\n3.3 COMPARING LOAD CASES <\/td>\n<\/tr>\n
324<\/td>\nTABLE 15-4 EQUIVALENT UNIFORM JOIST LOADS, BOTH CORRECTED AND UNCORRECTED FOR LOAD DURATION, FOR COMMERCIAL BUILDINGS A AND B <\/td>\n<\/tr>\n
325<\/td>\n3.4 DEMAND-CAPACITY RATIOS (DCRS) <\/td>\n<\/tr>\n
326<\/td>\nTABLE 15-5 COMMERCIAL BUILDING A SHOWING LOAD CASES AND RESULTING STRESSES Fb AND DEMAND CAPACITY RATIOS DCR <\/td>\n<\/tr>\n
327<\/td>\nTABLE 15-6 COMMERCIAL BUILDING B SHOWING LOAD CASES AND RESULTING STRESSES, fb AND DEMAND CAPACITY RATIOS, DCR <\/td>\n<\/tr>\n
328<\/td>\n4. EVALUATION TRIGGERS
4.1 GRAVITY TRIGGER-ROOF JOISTS
4.2 GRAVITY TRIGGERS-GIRDERS AND COLUMNS <\/td>\n<\/tr>\n
329<\/td>\n4.3 FOUNDATIONS
4.4 SEISMIC TRIGGERS
5. SUMMARY OF ROOF JOIST GRAVITY EVALUATION <\/td>\n<\/tr>\n
330<\/td>\n5.1 SHEAR
5.2 CONNECTIONS
5.3 DEFLECTIONS
5.4 PONDING
5.5 DISCUSSION OF TABLES 15-5 AND 15-6
5.5.1 JOIST DEPTH <\/td>\n<\/tr>\n
331<\/td>\nFIGURE 15-9 A STAGGERED MOUNT LAYOUT CREATES A QUASI-UNIFORM LOAD ON THE ROOF JOISTS <\/td>\n<\/tr>\n
332<\/td>\n5.5.2 CONCENTRATED LOADS
5.5.3 DCRS GREATER THAN ONE
6. CONCLUSIONS <\/td>\n<\/tr>\n
333<\/td>\n7. REFERENCES <\/td>\n<\/tr>\n
336<\/td>\nDESIGN EXAMPLE 16 CARPORT SOLAR PV SYSTEMS
OVERVIEW
OUTLINE <\/td>\n<\/tr>\n
337<\/td>\nFIGURE 16-1 FRAMING PLAN <\/td>\n<\/tr>\n
338<\/td>\nFIGURE 16-2 ELEVATION <\/td>\n<\/tr>\n
339<\/td>\n1. BUILDING GEOMETRY AND LOADS
1.1 GIVEN INFORMATION
TABLE 4-1
TABLE 26.10-1 <\/td>\n<\/tr>\n
340<\/td>\n1.2 ROOF LIVE LOADS
1.3 SEISMIC DESIGN FORCES <\/td>\n<\/tr>\n
341<\/td>\nTABLE 12.2-1.G-2
EQUATION 12.8-1
1.4 WIND DESIGN FORCES (MWFRS) <\/td>\n<\/tr>\n
342<\/td>\nTABLE 16-1 MWFRS NET PRESSURE COEFFICIENTS FOR CLEAR WIND FLOW
TABLE 16-2 MWFRS NET DESIGN PRESSURES FOR CLEAR WIND FLOW <\/td>\n<\/tr>\n
343<\/td>\nFIGURE 16-3 SUMMARIZES THE NET DESIGN PRESSURES DISTRIBUTION ON THE CROSS BEAM
FIGURE 16-3 MWFRS WIND LOADING DIAGRAM <\/td>\n<\/tr>\n
344<\/td>\n1.5 COMBINATIONS OF LOADS (MWFRS)
1.6 DESIGN REQUIREMENTS FOR MWFRS <\/td>\n<\/tr>\n
345<\/td>\nFIGURE 16-4 APPLIED FORCE DIAGRAM
TABLE 16-3 JOINT LOADS <\/td>\n<\/tr>\n
346<\/td>\n1.7 WIND DESIGN FORCES (C&C)
EQUATION 30.7-1
EQUATION 26.10-1
FIGURE 16-5 SUMMARY OF C&C ZONES <\/td>\n<\/tr>\n
347<\/td>\nTABLE 16-4 C&C NET PRESSURE COEFFICIENTS FOR CLEAR WIND FLOW
TABLE 16-5 C&C NET DESIGN PRESSURES FOR CLEAR WIND FLOW <\/td>\n<\/tr>\n
349<\/td>\n1.8 COMBINATIONS OF LOADS (C&C)
TABLE 16-6 DISTRIBUTED LOADS (y-axis\/z-axis) plf <\/td>\n<\/tr>\n
350<\/td>\nFIGURE 16-6 LOAD, SHEAR, AND BENDING MOMENT DIAGRAMS FOR D+0.6W <\/td>\n<\/tr>\n
351<\/td>\n2. ADDITIONAL CONSIDERATIONS
2.1 FOUNDATIONS
2.2 WIND LOADS ACTING ON BEAMS, COLUMNS, AND PURLINS
2.3 SNOW LOADING
FIGURE 16-7 UNBALANCED SNOW LOADING DIAGRAM <\/td>\n<\/tr>\n
352<\/td>\nFIGURE 16-8 PARTIAL SNOW-LOADING DIAGRAM
2.4 CARPORTS WITH A TILT LESS THAN 5 DEGREES <\/td>\n<\/tr>\n
353<\/td>\n2.5 WIND LOADING ON TRANSVERSE FRAMES <\/td>\n<\/tr>\n
354<\/td>\nICC EVALUATION SERVICE <\/td>\n<\/tr>\n
355<\/td>\nHELPFUL RESOURCES FOR YOUR IBC\u00ae <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Wind Design Manual Based on the 2018 IBC and ASCE\/SEI 7-16 Examples for Wind Forces on Buildings and Solar Photovoltaic Systems<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ICC<\/b><\/a><\/td>\n2018<\/td>\n355<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":211978,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2670],"product_tag":[],"class_list":{"0":"post-211975","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-icc","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/211975","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/211978"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=211975"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=211975"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=211975"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}