{"id":254844,"date":"2024-10-19T16:50:31","date_gmt":"2024-10-19T16:50:31","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-12010\/"},"modified":"2024-10-25T12:16:33","modified_gmt":"2024-10-25T12:16:33","slug":"bsi-pd-iec-tr-61850-90-12010","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-12010\/","title":{"rendered":"BSI PD IEC\/TR 61850-90-1:2010"},"content":{"rendered":"
This part of IEC 61850 provides a comprehensive overview on the different aspects that need to be considered while using IEC 61850 for information exchange between substations. In particular, this technical report<\/p>\n
defines use cases that require an information exchange between substations;<\/p>\n<\/li>\n
describes the communication requirements;<\/p>\n<\/li>\n
gives guidelines for the communication services and communication architecture to be used;<\/p>\n<\/li>\n
defines data as a prerequisite for interoperable applications;<\/p>\n<\/li>\n
does not define implementations which guarantee interoperability between different IEDs;<\/p>\n<\/li>\n
describes the usage and enhancements of the configuration language SCL.<\/p>\n<\/li>\n<\/ul>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 3 Terms and definitions 4 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 5 Use cases 5.1 General 5.2 Distance line protection with permissive overreach tele-protection scheme Figures Figure 1 \u2013 Distance line protection with permissive overreach tele-protection scheme <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 5.3 Distance line protection with blocking tele-protection scheme Figure 2 \u2013 Distance line protection with blocking tele-protection scheme <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.4 Directional comparison protection <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure 3 \u2013 Directional comparison with permissive scheme <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5.5 Transfer\/Direct tripping Figure 4 \u2013 Transfer\/Direct tripping <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5.6 Interlocking Figure 5 \u2013 Interlocking \u2013 Interoperation <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.7 Multi-phase auto-reclosing application for parallel line systems Figure 6 \u2013 Auto-reclosing <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.8 Current differential line protection <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure 7 \u2013 Current differential line protection <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5.9 Phase comparison protection Figure 8 \u2013 Phase comparison protection Figure 9 \u2013 Principle to detect internal fault by phase comparison <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 5.10 Other applications Figure 10 \u2013 Fault locator system (2, 3 terminals) <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure 11 \u2013 Example of a system integrity protection scheme <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 12 \u2013 Real time predictive type generator shedding system <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure 13 \u2013 Out-of-step detection <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 6 Communication requirements for substation-to-substation communication 6.1 General issues <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Figure 14 \u2013 Logical interfaces between substation A and substation B Tables Table 1 \u2013 Grouping of protection and control interfaces <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 6.2 Functions based on substation-substation communication Table 2 \u2013 Protection functions using substation-substation communication <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 6.3 Message performance requirements Table 3 \u2013 Control functions using substation-substation communication <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Figure 15 \u2013 Transfer time for binary and other signals over a serial connection Figure 16 \u2013 Transfer time for binary signal with conventional output and input relays <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 17 \u2013 Definition of transfer time t for binary signals in case of line protection Figure 18 \u2013 Definition of transfer time t over serial link in case of line protection <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 6.4 The introduction and use of message performance classes <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Table 4 \u2013 Change of transfer time and synchronisation method Table 5 \u2013 Performance classes for time tagging of events Table 6 \u2013 Time performance classes for instrument transformer synchronisation <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 6.5 General requirements for data integrity 6.6 Requirements for teleprotection \u2013 Reliability (security and dependability) Table 7 \u2013 The bit error rate as indication for communication quality <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 7 Considerations on security and dependability issues when using Ethernet networks 7.1 General 7.2 Security of traffic <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 7.3 Dependability of traffic 7.4 Avoiding GOOSE packets flooding the WAN <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 7.5 Summary on recommendations for using Ethernet for communication between substations <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 7.6 Useful features of some Ethernet telecommunications networks 8 Communication aspects 8.1 Services 8.2 Communication architecture <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 19 \u2013 Basic SS-to-SS communication structure <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 20 \u2013 SS-to-SS communication via tunnel <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 9 Modelling 9.1 General architecture Figure 21 \u2013 SS-to-SS communication via proxy gateway <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 9.2 Communication interface ITPC Figure 22 \u2013 Allocation of the LN ITPC representing the communication channel and the LNs providing the data to be exchanged between substations <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Table 8 \u2013 Logical node ITPC <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 9.3 Communication-aided protection schemes and direct tripping Figure 23 \u2013 Protection application example for permissive underreach distance teleprotection scheme and appropriate logical node modelling <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 9.4 Differential protection schemes Table 9 \u2013 Logical node PSCH <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure 24 \u2013 Communication system based on current system Figure 25 \u2013 Communication system based on future system <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Figure 26 \u2013 Proposed 2-terminal current differential feeder protection relay model Figure 27 \u2013 Proposed 3-terminal current differential feeder protection relay model <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Table 10 \u2013 Logical node RMXU <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 10 Configuration aspects 10.1 General 10.2 Direct communication link Table 11 \u2013 Sampled value (SV) format definition <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 28 \u2013 SCD files and SED region for SS-to-SS communication <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 29 \u2013 Enhanced engineering process <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Table 12 \u2013 IED engineering control types <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 30 \u2013 IED states when exchanging SED files <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 10.3 Tele-protection equipment between substations <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure 31 \u2013 Proxy gateway method (AA1F3, AA2F3 are Proxy gateways) <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Use of IEC 61850 for the communication between substations<\/b><\/p>\n |