{"id":452033,"date":"2024-10-20T09:22:05","date_gmt":"2024-10-20T09:22:05","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iso-10326-22022-tc\/"},"modified":"2024-10-26T17:26:49","modified_gmt":"2024-10-26T17:26:49","slug":"bs-iso-10326-22022-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iso-10326-22022-tc\/","title":{"rendered":"BS ISO 10326-2:2022 – TC"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
46<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions, symbols and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 3.2 Symbols and abbreviated terms <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 4 Direction of vibration <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 5 Characterization of vibration and of its transmission 5.1 Characterization of vibration 5.1.1 General 5.1.2 Root-mean-square acceleration, arms <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 5.1.3 Acceleration power auto spectral density, Gaa(f) 5.1.4 Acceleration cross spectral density, Gab(f) 5.2 Characterization of vibration transmission 5.2.1 General 5.2.2 Frequency response function, H(f) 5.2.3 Coherence function, \ufffc <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 5.2.4 Transmissibility, TR 5.2.5 Weighted transmissibility, TRw and SEAT factor <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 6 General observations 7 Measurement positions 8 Instrumentation <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | 9 Safety requirements 10 Test seats and test persons 10.1 Test seats 10.2 Test persons <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 11 Input test vibration 11.1 General 11.2 Pseudo-random excitation 11.2.1 Generation of the excitation signal <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 11.2.2 Power auto spectral density 11.2.3 Root-mean-square acceleration 11.2.4 Tolerances 11.2.5 Multi-axis excitation 11.3 Sinusoidal excitation <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 11.4 Realistic excitation representing the dynamic environment of the tested seat 12 Parameters adopted for characterizing the vibration transmission 12.1 Pseudo-random and realistic excitations 12.2 Sinusoidal excitation <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 13 Test procedure 13.1 Initial procedure 13.2 Tests under pseudo-random and realistic excitations 13.3 Tests under sinusoidal excitation 14 Test report 14.1 Seat 14.2 Test persons <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 14.3 Measuring chain 14.4 Results <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Annex A (informative) Example of excitation generating process <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Annex B (informative) Realistic vibration excitation for seat testing <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Mechanical vibration. Laboratory method for evaluating vehicle seat vibration – Application to railway vehicles<\/b><\/p>\n |